Multi-scale interactions have been observed recently in the HL-2A core NBI plasmas, including the synchronous coupling between kink mode and tearing mode, nonlinear couplings of TAE/BAE and TM near surface, AITG/KBM/BAE and kink mode near surface, and between kink mode and high-frequency turbulence. Experimental results suggest that several couplings can exist simultaneously, Alfvenic fluctuations have an important contribution to the high-frequency turbulence spectra, and the couplings reveal the electromagnetic character. Multi-scale interactions via the nonlinear modulation process maybe enhance plasma transport and trigger sawtooth-crash onset.
The oscillations of poloidal plasma flows induced by radially sheared zonal flows are investigated by newly developed correlation Doppler reflectometers in the HL-2A tokamak. The non-disturbing diagnostic allows one to routinely measure the rotation velocity of turbulence, and hence the radial electric field fluctuations. With correlation Doppler reflectometers, a three-dimensional spatial structure of geodesic acoustic mode (GAM) is surveyed, including the symmetric feature of poloidal and toroidal E r fluctuations, the dependence of GAM frequency on radial temperature and the radial propagation of GAMs. The co-existence of low-frequency zonal flow and GAM is presented. The temporal behaviors of GAM during ramp-up experiments of plasma current and electron density are studied, which reveal the underlying damping mechanisms for the GAM oscillation level.
Increasing the plasma density is one of the key methods in achieving an efficient fusion reaction. High-density operation is one of the hot topics in tokamak plasmas. Density limit disruptions remain an important issue for safe operation. An effective density limit disruption prediction and avoidance system is the key to avoid density limit disruptions for long pulse steady state operations. An artificial neural network has been developed for the prediction of density limit disruptions on the J-TEXT tokamak. The neural network has been improved from a simple multi-layer design to a hybrid two-stage structure. The first stage is a custom network which uses time series diagnostics as inputs to predict plasma density, and the second stage is a three-layer feedforward neural network to predict the probability of density limit disruptions. It is found that hybrid neural network structure, combined with radiation profile information as an input can significantly improve the prediction performance, especially the average warning time (T warn ). In particular, the T warn is eight times better than that in previous work (Wang et al 2016 Plasma Phys. Control. Fusion 58 055014) (from 5 ms to 40 ms). The success rate for density limit disruptive shots is above 90%, while, the false alarm rate for other shots is below 10%. Based on the density limit disruption prediction system and the real-time density feedback control system, the on-line density limit disruption avoidance system has been implemented on the J-TEXT tokamak.
The impact of impurity ions on a pedestal has been investigated in the HL-2A Tokamak, at the Southwestern Institute of Physics, Chengdu, China. Experimental results have clearly shown that during the H-mode phase, an electromagnetic turbulence was excited in the edge plasma region, where the impurity ions exhibited a peaked profile. It has been found that double impurity critical gradients are responsible for triggering the turbulence. Strong stiffness of the impurity profile has been observed during cyclic transitions between the I-phase and H-mode regime. The results suggest that the underlying physics of the self-regulated edge impurity profile offers the possibility for an active control of the pedestal dynamics via pedestal turbulence.
In HL-2A and J-TEXT ohmic confinement regimes, an electrostatic turbulence with quasi-coherent characteristics in spectra of density fluctuations was observed by multi-channel microwave reflectometers. These quasi-coherent modes (QCMs) were detectable in a large plasma region (r/a∼0.3−0.8). The characteristic frequencies of QCMs were in the range of 30–140 kHz. The mode is rotated in the electron diamagnetic direction. In the plasmas with QCMs, trapped electron mode (TEM) was predicted to be unstable by gyrokinetic simulations. The combined experimental results show that the TEM is survived in the linear ohmic confinement regime of plasmas. The quasi-coherent TEM was replaced by broad-band fluctuations when the plasma transits from linear to saturated ohmic confinement regime. The observation was strongly related to the turbulence transition from TEM to ion temperature gradient mode. A critical gradient threshold for TEM excitation in electron temperature gradient was directly found. The effect of TEM on density profile peaking was presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.