New 1,7-closo-carboranylanilinoquinazoline hybrids have been identified as EGFR inhibitors, one of them with higher affinity than the parent compound erlotinib. The comparative docking analysis with compounds bearing bioisoster-substructures, demonstrated the relevance of the 3D aromatic-boron-rich moiety for interacting into the EGFR ATP binding region. The capability to accumulate in glioma cells, the ability to cross the blood-brain barrier and the stability on simulated biological conditions, render these molecules as lead compounds for further structural modifications to obtain dual action drugs to treat glioblastoma.
The reported new anilinoquinazoline-icosahedral borane hybrids have been evaluated as glioma targeting for potential use in cancer therapy. Their anti-glioma activity depends on hybrids' lipophilicity; the most powerful compound against glioma cells, a 1,7-closo-derivative, displayed at least 3.3 times higher activity than the parent drug erlotinib. According to the cytotoxic effects on normal glia cells, the hybrids were selective for epidermal growth factor receptor (EGFR)-overexpressed tumor cells. These boron carriers could be used to enrich glioma cancer cells with boron for cancer therapy.
This work investigates the potential of glycosylation to actively target nanodrug delivery systems to adult solid tumors overexpressing glucose transporters. The highly hydrophobic fluorescent compound curcumin (CUR) is nanoencapsulated within polymeric micelles of pristine and glucosylated poly(ethylene oxide)‐poly(propylene oxide) block copolymers, and their interaction with breast cancer (BC) cells is investigated in vitro and in vivo. The aqueous solubility of CUR is increased more than 50 000‐fold and spherical nanoparticles display size in the 40 to 500 nm range, as determined by transmission electron microscopy and by dynamic light scattering, respectively. Uptake studies conducted in the BC cell line 4T1 in vitro demonstrate that glucosylation enhances nanoparticle internalization. Finally, the ability of unmodified and glucosylated polymeric micelles to accumulate in female BALB/c mice bearing 4T1‐induced tumors is compared by ex vivo bioimaging with auspicious results.
Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc-HYNIC tetrazine reacted with the TCO-CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc- HYNIC-tetrazine for tumor imaging with pretargeted mAbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.