Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localise to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequiste for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knockin of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, CDK7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knockin mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine resistant breast cancer mediated by ER mutations.
Despite the development of nomograms designed to evaluate a prostate cancer (PCa) patient's prognosis, the information has been limited to PSA, clinical stage, Gleason score and tumor volume estimates. We compared the prognostic potential of 4 histologic markers, hyaluronic acid (HA), HYAL-1-type hyaluronidase (HAase), CD44v6 and microvessel density (MVD) using immunohistochemistry. HA is a glycosaminoglycan that promotes tumor metastasis.
Currently, gastrointestinal segments are considered the gold standard for bladder reconstructive procedures. However, significant complications including chronic urinary tract infection, metabolic abnormalities, urinary stone formation, bowel dysfunction, and secondary malignancies are associated with this approach. Biomaterials derived from silk fibroin may represent a superior alternative due their robust mechanical properties, biodegradable features, and processing plasticity. In the present study, we evaluated the efficacy of a gel spun silk-based matrix for bladder augmentation in a murine model. Over the course of 70 d implantation period, H&E and Masson’s trichrome (MTS) analysis revealed that silk matrices were capable of supporting both urothelial and smooth muscle regeneration at the defect site. Prominent uroplakin and contractile protein expression (α-actin, calponin, and SM22α) was evident by immunohistochemical analysis demonstrating maturation of the reconstituted bladder wall compartments. Gel spun silk matrices also elicited a minimal acute inflammatory reaction following 70 d of bladder integration, in contrast to parallel assessments of small intestinal submucosa (SIS) and polyglycolic acid (PGA) matrices which routinely promoted evidence of fibrosis and chronic inflammatory responses. Voided stain on paper analysis revealed that silk augmented animals displayed similar voiding patterns in comparison to non surgical controls by 42 d of implantation. In addition, cystometric evaluations of augmented bladders at 70 d post-op demonstrated that silk scaffolds supported significant increases in bladder capacity, voided volume, and flow rate while maintaining similar degrees of compliance relative to the control group. These results provide evidence for the utility of gel spun silk-based matrices for functional bladder tissue engineering applications.
Diabetic bladder dysfunction (DBD) is common and affects 80% of diabetic patients. However, the molecular mechanisms underlying DBD remain elusive because of a lack of appropriate animal models. We demonstrate DBD in a mouse model that harbors hepatic-specific insulin receptor substrate 1 and 2 deletions (double knockout [DKO]), which develops type 2 diabetes. Bladders of DKO animals exhibited detrusor overactivity at an early stage: increased frequency of nonvoiding contractions during bladder filling, decreased voided volume, and dispersed urine spot patterns. In contrast, older animals with diabetes exhibited detrusor hypoactivity, findings consistent with clinical features of diabetes in humans. The tumor necrosis factor (TNF) superfamily genes were upregulated in DKO bladders. In particular, TNF-α was upregulated in serum and in bladder smooth muscle tissue. TNF-α augmented the contraction of primary cultured bladder smooth muscle cells through upregulating Rho kinase activity and phosphorylating myosin light chain. Systemic treatment of DKO animals with soluble TNF receptor 1 (TNFRI) prevented upregulation of Rho A signaling and reversed the bladder dysfunction, without affecting hyperglycemia. TNFRI combined with the antidiabetic agent, metformin, improved DBD beyond that achieved with metformin alone, suggesting that therapies targeting TNF-α may have utility in reversing the secondary urologic complications of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.