Orexins/hypocretins are key neuropeptides responsible for regulating central arousal and reward circuits. Two receptors respond to orexin signaling, orexin 1 receptor (OX(1)R) and orexin 2 receptor (OX(2)R) with partially overlapping nervous system distributions. Genetic studies suggest orexin receptor antagonists could be therapeutic for insomnia and other disorders with disruptions of sleep and wake. Suvorexant (MK-4305) is a potent, selective, and orally bioavailable antagonist of OX(1)R and OX(2)R currently under clinical investigation as a novel therapy for insomnia. Examination of Suvorexant in radioligand binding assays using tissue from transgenic rats expressing the human OX(2)R found nearly full receptor occupancy (>90%) at plasma exposures of 1.1 μM. Dosed orally Suvorexant significantly and dose-dependently reduced locomotor activity and promoted sleep in rats (10, 30, and 100 mg/kg), dogs (1 and 3 mg/kg), and rhesus monkeys (10 mg/kg). Consistent cross-species sleep/wake architecture changes produced by Suvorexant highlight a unique opportunity to develop dual orexin antagonists as a novel therapy for insomnia.
Current treatments for insomnia, such as zolpidem (Ambien) and eszopiclone (Lunesta), are γ-aminobutyric acid type A (GABAA)-positive allosteric modulators that carry a number of side effects including the potential to disrupt cognition. In an effort to develop better tolerated medicines, we have identified dual orexin 1 and 2 receptor antagonists (DORAs), which promote sleep in preclinical animal models and humans. We compare the effects of orally administered eszopiclone, zolpidem, and diazepam to the dual orexin receptor antagonist DORA-22 on sleep and the novel object recognition test in rat, and on sleep and two cognition tests (delayed match to sample and serial choice reaction time) in the rhesus monkey. Each compound's minimal dose that promoted sleep versus the minimal dose that exerted deficits in these cognitive tests was determined, and a therapeutic margin was established. We found that DORA-22 has a wider therapeutic margin for sleep versus cognitive impairment in rat and rhesus monkey compared to the other compounds tested. These data were further supported with the demonstration of a wider therapeutic margin for DORA-22 compared to the other compounds on sleep versus the expression of hippocampal activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene product involved in synaptic plasticity. These findings suggest that DORAs might provide an effective treatment for insomnia with a greater therapeutic margin for sleep versus cognitive disturbances compared to the GABAA-positive allosteric modulators currently in use.
BackgroundDrugs targeting insomnia ideally promote sleep throughout the night, maintain normal sleep architecture, and are devoid of residual effects associated with morning sedation. These features of an ideal compound are not only dependent upon pharmacokinetics, receptor binding kinetics, potency and pharmacodynamic activity, but also upon a compound’s mechanism of action.ResultsDual orexin receptor antagonists (DORAs) block the arousal-promoting activity of orexin peptides and, as demonstrated in the current work, exhibit an efficacy signal window dependent upon oscillating levels of endogenous orexin neuropeptide. Sleep efficacy of structurally diverse DORAs in rat and dog was achieved at plasma exposures corresponding to orexin 2 receptor (OX2R) occupancies in the range of 65 to 80%. In rats, the time course of OX2R occupancy was dependent upon receptor binding kinetics and was tightly correlated with the timing of active wake reduction. In rhesus monkeys, direct comparison of DORA-22 with GABA-A modulators at similar sleep-inducing doses revealed that diazepam produced next-day residual sleep and both diazepam and eszopiclone induced next-day cognitive deficits. In stark contrast, DORA-22 did not produce residual effects. Furthermore, DORA-22 evoked only minimal changes in quantitative electroencephalogram (qEEG) activity during the normal resting phase in contrast to GABA-A modulators which induced substantial qEEG changes.ConclusionThe higher levels of receptor occupancy necessary for DORA efficacy require a plasma concentration profile sufficient to maintain sleep for the duration of the resting period. DORAs, with a half-life exceeding 8 h in humans, are expected to fulfill this requirement as exposures drop to sub-threshold receptor occupancy levels prior to the wake period, potentially avoiding next-day residual effects at therapeutic doses.
TWIK-related acid-sensitive K(+) (K(2P) 9.1, TASK-3) ion channels have the capacity to regulate the activity of neuronal pathways by influencing the resting membrane potential of neurons on which they are expressed. The central nervous system (CNS) expression of these channels suggests potential roles in neurologic disorders, and it is believed that the development of TASK-3 antagonists could lead to the therapeutic treatment of a number of neurological conditions. While a therapeutic potential for TASK-3 channel modulation exists, there are only a few documented examples of potent and selective small-molecule channel blockers. Herein, we describe the discovery and lead optimization efforts for a novel series of TASK-3 channel antagonists based on a 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine high-throughput screening lead from which a subseries of potent and selective inhibitors were identified. One compound was profiled in detail with respect to its physical properties and demonstrated pharmacological target engagement as indicated by its ability to modulate sleep architecture in rodent electroencephalogram (EEG) telemetry models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.