This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials.
Purpose Gene-based immunotherapy for cancer is limited by the lack of safe, efficient, reproducible, and titratable delivery methods. Direct injection of DNA into tissue, although safer than viral vectors, suffers from low gene transfer efficiency. In vivo electroporation, in preclinical models, significantly enhances gene transfer efficiency while retaining the safety advantages of plasmid DNA. Patients and Methods A phase I dose escalation trial of plasmid interleukin (IL)-12 electroporation was carried out in patients with metastatic melanoma. Patients received electroporation on days 1, 5, and 8 during a single 39-day cycle, into metastatic melanoma lesions with six 100-μs pulses at a 1,300-V/cm electric field through a penetrating six-electrode array immediately after DNA injection. Pre- and post-treatment biopsies were obtained at defined time points for detailed histologic evaluation and determination of IL-12 protein levels. Results Twenty-four patients were treated at seven dose levels, with minimal systemic toxicity. Transient pain after electroporation was the major adverse effect. Post-treatment biopsies showed plasmid dose proportional increases in IL-12 protein levels as well as marked tumor necrosis and lymphocytic infiltrate. Two (10%) of 19 patients with nonelectroporated distant lesions and no other systemic therapy showed complete regression of all metastases, whereas eight additional patients (42%) showed disease stabilization or partial response. Conclusion This report describes the first human trial, to our knowledge, of gene transfer utilizing in vivo DNA electroporation. The results indicated this modality to be safe, effective, reproducible, and titratable.
We explored the association between liver metastases, tumor CD8+ T-cell count, and response in patients with melanoma or lung cancer treated with the anti-PD-1 antibody, pembrolizumab. The melanoma discovery cohort was drawn from the phase I Keynote 001 trial, whereas the melanoma validation cohort was drawn from Keynote 002, 006, and EAP trials and the non–small cell lung cancer (NSCLC) cohort from Keynote 001. Liver metastasis was associated with reduced response and shortened progression-free survival [PFS; objective response rate (ORR), 30.6%; median PFS, 5.1 months] compared with patients without liver metastasis (ORR, 56.3%; median PFS, 20.1 months) P ≤ 0.0001, and confirmed in the validation cohort (P = 0.0006). The presence of liver metastasis significantly increased the likelihood of progression (OR, 1.852; P < 0.0001). In a subset of biopsied patients (n = 62), liver metastasis was associated with reduced CD8+ T-cell density at the invasive tumor margin (liver metastasis+ group, n = 547 ± 164.8; liver metastasis− group, n = 1,441 ± 250.7; P < 0.016). A reduced response rate and shortened PFS was also observed in NSCLC patients with liver metastasis [median PFS, 1.8 months; 95% confidence interval (CI), 1.4–2.0], compared with those without liver metastasis (n = 119, median PFS, 4.0 months; 95% CI, 2.1–5.1), P = 0.0094. Thus, liver metastatic patients with melanoma or NSCLC that had been treated with pembrolizumab were associated with reduced responses and PFS, and liver metastases were associated with reduced marginal CD8+ T-cell infiltration, providing a potential mechanism for this outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.