Acute lymphoblastic leukemia (ALL) treatment regimens have dramatically improved the survival of ALL patients. However, chemoresistant minimal residual disease (MRD) that persists following cessation of therapy contributes to aggressive relapse. The bone marrow microenvironment (BMM) is an established “site of sanctuary” for ALL as well as myeloid lineage hematopoietic disease, with signals in this unique anatomical location contributing to drug resistance. Several models have been developed to recapitulate the interactions between the BMM and ALL cells. However, many in vitro models fail to accurately reflect the level of protection afforded to the most resistant sub-set of leukemic cells during co-culture with BMM elements. Pre-clinical in vivo models have advantages, but can be costly, and are often not fully informed by optimal in vitro studies. In the current report we describe an innovative extension of 2D co-culture wherein ALL cells uniquely interact with bone marrow derived stromal cells. Tumor cells in this model bury beneath primary human bone marrow derived stromal cells or osteoblasts, termed “phase dim” (PD) ALL, and exhibit a unique phenotype characterized by altered metabolism, distinct protein expression profiles, increased quiescence, and pronounced chemotherapy resistance. Investigation focused on the PD subpopulation may more efficiently inform pre-clinical design and investigation of MRD and relapse that arises from BMM supported leukemic tumor cells.
Statement: Proximity proteomics reveals a specific and specialized Ncadherin (CDH2) interactome along the cell-cell contacts of primary cardiomyocytes. AbstractThe junctional complexes that couple cardiomyocytes must transmit the mechanical forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) connects the actomyosin networks of neighboring cardiomyocytes and is required for proper heart function. Yet little is known about the molecular composition of the cardiomyocyte AJ or how it is organized to function under mechanical load. Here we define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble stable AJs along intercellular contacts with organizational and structural hallmarks similar to mature contacts. We combine quantitative mass spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors are comprised primarily of adaptor and adhesion proteins that promote junction specialization. Finally, we find evidence of dynamic interplay between AJ and Z-disc proteins. Together, our results provide novel insight into the cardiomyocyte AJ and provide a proteomic atlas for defining the molecular complexes that regulate cardiomyocyte intercellular adhesion. . et al. (2016). The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior. Sci Rep 6, 35298.Barton, L. J., Soshnev, A. A. and Geyer, P. K. (2015). Networking in the nucleus: a spotlight on LEM-domain proteins.
The junctional complexes that couple cardiomyocytes must transmit the mechanical forces of contraction while maintaining adhesive homeostasis. The adherens junction (AJ) connects the actomyosin networks of neighboring cardiomyocytes and is required for proper heart function. Yet little is known about the molecular composition of the cardiomyocyte AJ or how it is organized to function under mechanical load. Here, we define the architecture, dynamics and proteome of the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble stable AJs along intercellular contacts with organizational and structural hallmarks similar to mature contacts. We combine quantitative mass spectrometry with proximity labeling to identify the N-cadherin (CDH2) interactome. We define over 350 proteins in this interactome, nearly 200 of which are unique to CDH2 and not part of the E-cadherin (CDH1) interactome. CDH2-specific interactors comprise primarily adaptor and adhesion proteins that promote junction specialization. Our results provide novel insight into the cardiomyocyte AJ and offer a proteomic atlas for defining the molecular complexes that regulate cardiomyocyte intercellular adhesion.
Recent findings suggest that the inhibition of Aurora A (AURKA) kinase may offer a novel treatment strategy against metastatic cancers. In the current study, we determined the effects of AURKA inhibition by the small molecule inhibitor MLN8237 both as a monotherapy and in combination with the microtubule targeting drug eribulin on different stages of metastasis in triple negative breast cancer (TNBC) and defined the potential mechanism of its action. MLN8237 as a single agent and in combination with eribulin affected multiple steps in the metastatic process including migration, attachment, and proliferation in distant organs, resulting in suppression of metastatic colonization and recurrence of cancer. Eribulin application induces accumulation of active AURKA in TNBC cells providing foundation for the combination therapy. Mechanistically, AURKA inhibition induced cytotoxic autophagy via activation of the LC3B/p62 axis and inhibition of pAKT, leading to eradication of metastases, but has no effect on growth of mammary tumor. Combination of MLN8237 with eribulin leads to a synergistic increase in apoptosis in mammary tumors, as well as cytotoxic autophagy in metastases. This preclinical data provides a new understanding of the mechanisms by which MLN8237 mediates its anti-metastatic effects and advocates for its combination with eribulin in future clinical trials for metastatic breast cancer and early stage solid tumors.
Host mitochondrial association (HMA) is a well-known phenomenon during Toxoplasma gondii infection of the host cell. The T. gondii locus mitochondrial association factor 1 (MAF1) is required for HMA and MAF1 encodes distinct paralogs of secreted dense granule effector proteins, some of which mediate the HMA phenotype (MAF1b paralogs drive HMA; MAF1a paralogs do not). To identify host proteins required for MAF1b-mediated HMA, we performed unbiased, label-free quantitative proteomics on host cells infected with type II parasites expressing MAF1b, MAF1a, and an HMA-incompetent MAF1b mutant. Across these samples, we identified ∼1,360 MAF1-interacting proteins, but only 13 that were significantly and uniquely enriched in MAF1b pull-downs. The gene products include multiple mitochondria-associated proteins, including those that traffic to the mitochondrial outer membrane. Based on follow-up endoribonuclease-prepared short interfering RNA (esiRNA) experiments targeting these candidate MAF1b-targeted host factors, we determined that the mitochondrial receptor protein TOM70 and mitochondria-specific chaperone HSPA9 were essential mediators of HMA. Additionally, the enrichment of TOM70 at the parasitophorous vacuole membrane interface suggests parasite-driven sequestration of TOM70 by the parasite. These results show that the interface between the T. gondii vacuole and the host mitochondria is characterized by interactions between a single parasite effector and multiple target host proteins, some of which are critical for the HMA phenotype itself. The elucidation of the functional members of this complex will permit us to explain the link between HMA and changes in the biology of the host cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.