We report that the many Eph-related receptor tyrosine kinases, and their numerous membrane-bound ligands, can each be grouped into only two major specificity subclasses. Receptors in a given subclass bind most members of a corresponding ligand subclass. The physiological relevance of these groupings is suggested by viewing the collective distributions of all members of a subclass. These composite distributions, in contrast with less informative patterns seen with individual members of the family, reveal that the developing embryo is subdivided into domains defined by reciprocal and apparently mutually exclusive expression of a receptor subclass and its corresponding ligands. Receptors seem to encounter their ligands only at the interface between these domains. This reciprocal compartmentalization implicates the Eph family in the formation of spatial boundaries that may help to organize the developing body plan.
Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis, colorectal cancer prescreening and therapeutic choices in melanoma. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic and cardiovascular diseases. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.
Vascular development depends on the highly coordinated actions of a variety of angiogenic regulators, most of which apparently act downstream of vascular endothelial growth factor (VEGF). One potential such regulator is delta-like 4 ligand (Dll4), a recently identified partner for the Notch receptors. We generated mice in which the Dll4 gene was replaced with a reporter gene, and found that Dll4 expression is initially restricted to large arteries in the embryo, whereas in adult mice and tumor models, Dll4 is specifically expressed in smaller arteries and microvessels, with a striking break in expression just as capillaries merge into venules. Consistent with these arterial-specific expression patterns, heterozygous deletion of Dll4 resulted in prominent albeit variable defects in arterial development (reminiscent of those in Notch knockouts), including abnormal stenosis and atresia of the aorta, defective arterial branching from the aorta, and even arterial regression, with occasional extension of the defects to the venous circulation; also noted was gross enlargement of the pericardial sac and failure to remodel the yolk sac vasculature. These striking phenotypes resulting from heterozygous deletion of Dll4 indicate that vascular development may be as sensitive to subtle changes in Dll4 dosage as it is to subtle changes in VEGF dosage, because VEGF accounts for the only other example of haploid insufficiency, resulting in obvious vascular abnormalities. In summary, Dll4 appears to be a major trigger of Notch receptor activities previously implicated in arterial and vascular development, and it may represent a new opportunity for pro-and anti-angiogenic therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.