This study develops a model of a closed-loop supply chain (CLSC) network which starts with the suppliers and recycles with the decomposition centers. As a traditional network design, we consider minimizing the all transportation costs and the raw material purchasing costs. To pay attention for the green impacts, different transportation choices are presented between echelons according to their CO 2 emissions. The plants can purchase different raw materials in respect of their recyclable ratios. The focuses of this paper are conducting the minimizing total CO 2 emissions. Also we try to encourage the customers to use recyclable materials as an environmental performance viewpoint besides minimizing total costs. A multi objective linear programming model is developed via presenting a numerical example. We close the paper with recommendations for future researches.
Abstract-The increasing penetration of renewable energy sources, the demand for more energy efficient electricity production and the increase in distributed electricity generation causes a shift in the way electricity is produced and consumed. The downside of these changes in the electricity grid is that network stability and controllability become more difficult compared to the old situation. The new network has to accommodate various means of production, consumption and buffering and needs to offer control over the energy flows between these three elements.In order to offer such a control mechanism we need to know more about the individual aspects. In this paper we focus on the modelling of distributed production. Especially, we look at the use of microCHP (Combined Heat and Power) appliances in a group of houses.The problem of planning the production runs of the microCHP is modelled via an ILP formulation, both for a single house and for a group of houses.
Load frequency control in power systems introduces as one of the most important items in order to supply reliable electric power with good quality. The goals of the Load Frequency Control (LFC) are to maintain zero steady state errors in a two area interconnected power system. To achieve this goal a fast controller with having no steady-state error will be necessary to be included in power systems. In this paper a new genetic algorithm based method is presented to obtain optimal gains of this controller included in two-area interconnected power system. Simulation results in comparison with correspondence methods confirm the efficiency of proposed method through fastdamping steady-state deviations in power and frequency with presence of step load disturbance.
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for prediction of electricity consumption than the multivariate linear regression model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.