The aim of this study was to evaluate the antimicrobial activity of the crude extract of the twigs of Dorstenia barteri (DBT) as well as that of four of the five flavonoids isolated from this extract. Gram-positive bacteria (six species), Gram-negative bacteria (12 species) and fungi (four species) were used. The agar disc diffusion test was used to determine the sensitivity of the tested samples while the well micro-dilution was used to determine the minimal inhibition concentrations (MIC) and the minimal microbicidal concentration (MMC) of the active samples. The results of the disc diffusion assay openUP (May 2008) showed that DBT, isobavachalcone (1), and kanzonol C (4) prevented the growth of all the 22 tested microbial species. Other compounds showed selective activity. The inhibitory activity of the most active compounds namely compounds 1 and 4 was noted on 86.4% of the tested microorganisms and that of 4-hydroxylonchocarpin (3)
Abbreviations
BackgroundMany plants of the family Moraceae are used in the treatment of infectious diseases. Ficus polita Vahl., an edible plant belonging to this family is used traditionally in case of dyspepsia, infectious diseases, abdominal pains and diarrhea. The present work was designed to assess the antimicrobial activity of the methanol extract from the roots of F. polita (FPR), as well as that of its fractions (FPR1-5) and two of the eight isolated compounds, namely euphol-3-O-cinnamate (1) and (E)-3,5,4'-trihydroxy-stilbene-3,5-O-β-D-diglucopyranoside (8).MethodsThe liquid microdilution assay was used in the determination of the minimal inhibitory concentration (MIC) and the minimal microbicidal concentration (MMC), against seven bacterial and one fungal species.ResultsThe results of the MIC determination showed that the crude extract, fractions FPR1, FPR2 and compound 8 were able to prevent the growth of the eight tested microorganisms. Other samples showed selective activity. The lowest MIC value of 64 μg/ml for the crude extract was recorded on 50% of the studied microbial species. The corresponding value for fractions of 32 μg/ml was obtained on Salmonella typhi, Escherichia coli and Candida albicans ATCC strains. The MIC values recorded with compound 8 on the resistant Pseudomonas aeruginosa PA01 strain was equal to that of chloramphenicol used as reference antibiotic.ConclusionThe obtained results highlighted the interesting antimicrobial potency of F. polita as well as that of compound 8, and provided scientific basis for the traditional use of this taxon in the treatment of microbial infections.
The present study was designed to assess the antimicrobial activity of 19 natural products belonging to terpenoids, alkaloids, thiophenes and phenolics against a panel of 14 Gram-negative multidrug-resistant (MDR) bacteria. The results demonstrated that amongst the studied compounds, alkaloids and terpenoids were less active contrary to flavonoids: neocyclomorusin (3) and candidone (6) and isoflavonoids: neobavaisoflavone (8) and daidzein (12). Thiophene, 2-(penta-1,3-diynyl)-5-(3,4-dihydroxybut-1-ynyl)thiophene (17) showed moderate and selective activities. Compounds 3, 6, 8 and 12 displayed minimal inhibitory concentration (MIC) ranged from 4 to 256 μg/mL on all the 14 tested bacteria. MIC values below 10 μg/mL were obtained with 8, 3, 6 and 12 against 50, 42.9, 35.7 and 21.4 % of the tested bacteria. The lowest MIC value of 4 μg/mL was obtained with compound 3 against Klebsiella pneumoniae ATCC11296, Enterobacter cloacae BM47, compound 6 against Escherichia coli ATCC8739, K. pneumoniae ATCC11296, E. cloacae BM47 and compound 8 against K. pneumoniae ATCC11296 and E. cloacae BM47. The activity of flavonoid 3 was better or equal to that of chloramphenicol in all tested K. pneumoniae,Providencia stuartii, E. aerogenes, E. cloacae and Pseudomonas aeruginosa strains. Within isoflavonoids, neobavaisoflavone scaffold was detected as a pharmacophoric moiety. This study indicates that natural products such as 3, 6 and 8 could be explored more to develop antimicrobial drugs to fight MDR bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.