Isolated methylmalonic acidemia/aciduria (MMA) is a devastating metabolic disorder with poor outcomes despite current medical treatments. Like other mitochondrial enzymopathies, enzyme replacement therapy (ERT) is not available, and although promising, AAV gene therapy can be limited by pre-existing immunity and has been associated with genotoxicity in mice. To develop a new class of therapy for MMA, we generated a pseudoU-modified codon-optimized mRNA encoding human methylmalonyl-CoA mutase (hMUT), the enzyme most frequently mutated in MMA, and encapsulated it into biodegradable lipid nanoparticles (LNPs). Intravenous (i.v.) administration of hMUT mRNA in two different mouse models of MMA resulted in a 75%-85% reduction in plasma methylmalonic acid and was associated with increased hMUT protein expression and activity in liver. Repeat dosing of hMUT mRNA reduced circulating metabolites and dramatically improved survival and weight gain. Additionally, repeat i.v. dosing did not increase markers of liver toxicity or inflammation in heterozygote MMA mice.
Arginase deficiency is caused by biallelic mutations in arginase 1 (ARG1), the final step of the urea cycle, and results biochemically in hyperargininemia and the presence of guanidino compounds, while it is clinically notable for developmental delays, spastic diplegia, psychomotor function loss, and (uncommonly) death. There is currently no completely effective medical treatment available. While preclinical strategies have been demonstrated, disadvantages with viral-based episomal-expressing gene therapy vectors include the risk of insertional mutagenesis and limited efficacy due to hepatocellular division. Recent advances in messenger RNA (mRNA) codon optimization, synthesis, and encapsulation within biodegradable liver-targeted lipid nanoparticles (LNPs) have potentially enabled a new generation of safer, albeit temporary, treatments to restore liver metabolic function in patients with urea cycle disorders, including ARG1 deficiency. In this study, we applied such technologies to successfully treat an ARG1-deficient murine model. Mice were administered LNPs encapsulating human codon-optimized ARG1 mRNA every 3 d. Mice demonstrated 100% survival with no signs of hyperammonemia or weight loss to beyond 11 wk, compared with controls that perished by day 22. Plasma ammonia, arginine, and glutamine demonstrated good control without elevation of guanidinoacetic acid, a guanidino compound. Evidence of urea cycle activity restoration was demonstrated by the ability to fully metabolize an ammonium challenge and by achieving near-normal ureagenesis; liver arginase activity achieved 54% of wild type. Biochemical and microscopic data showed no evidence of hepatotoxicity. These results suggest that delivery of ARG1 mRNA by liver-targeted nanoparticles may be a viable gene-based therapeutic for the treatment of arginase deficiency.
Fabry disease is an X-linked lysosomal storage disease caused by loss of alpha galactosidase A (a-Gal A) activity and is characterized by progressive accumulation of globotriaosylceramide and its analogs in all cells and tissues. Although enzyme replacement therapy (ERT) is considered standard of care, the long-term effects of ERT on renal and cardiac manifestations remain uncertain and thus novel therapies are desirable. We herein report preclinical studies evaluating systemic messenger RNA (mRNA) encoding human a-Gal A in wild-type (WT) mice, a-Gal A-deficient mice, and WT non-human primates (NHPs). The pharmacokinetics and distribution of h-a-Gal A mRNA encoded protein in WT mice demonstrated prolonged half-lives of a-Gal A in tissues and plasma. Single intravenous administration of h-a-Gal A mRNA to Gla-deficient mice showed dose-dependent protein activity and substrate reduction. Moreover, long duration (up to 6 weeks) of substrate reductions in tissues and plasma were observed after a single injection. Furthermore, repeat i.v. administration of h-a-Gal A mRNA showed a sustained pharmacodynamic response and efficacy in Fabry mice model. Lastly, multiple administrations to non-human primates confirmed safety and translatability. Taken together, these studies across species demonstrate preclinical proof-of-concept of systemic mRNA therapy for the treatment of Fabry disease and this approach may be useful for other lysosomal storage disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.