Our results suggest that, via transition to a mesenchymal phenotype, TEC can produce ECM proteins in human disease and directly intervene in the fibrotic processes. Moreover, the association of EMT features with serum creatinine supports the value of these markers in the assessment of disease severity.
Background: Particulate air pollution has been linked to heart disease and stroke, possibly resulting from enhanced coagulation and arterial thrombosis. Whether particulate air pollution exposure is related to venous thrombosis is unknown. Methods: We examined the association of exposure to particulate matter of less than 10 µm in aerodynamic diameter (PM 10) with deep vein thrombosis (DVT) risk in 870 patients and 1210 controls from the Lombardy region in Italy, who were examined between 1995 and 2005. We estimated exposure to PM 10 in the year before DVT diagnosis (cases) or examination (controls) through areaspecific mean levels obtained from ambient monitors.
Summary. Background: Consistent evidence has indicated that air pollution increases the risk of cardiovascular diseases. The underlying mechanisms linking air pollutants to increased cardiovascular risk are unclear. Objectives: We investigated the association between the pollution levels and changes in such global coagulation tests as the prothrombin time (PT) and the activated partial thromboplastin time (APTT) in 1218 normal subjects from the Lombardia Region, Italy. Plasma fibrinogen and naturally occurring anticoagulant proteins were also evaluated. Methods: Hourly concentrations of particulate (PM 10 ) and gaseous pollutants (CO, NO 2 , SO 2 , and O 3 ) were obtained from 53 monitoring sites covering the study area. Generalized additive models were applied to compute standardized regression coefficients controlled for age, gender, body mass index, smoking, alcohol, hormone use, temperature, day of the year, and long-term trends. Results: The PT became shorter with higher ambient air concentrations at the time of the study of PM 10 (coefficient ¼ )0.06; P < 0.05), CO (coefficient ¼ )0.11; P < 0.001) and NO 2 (coefficient ¼ )0.06; P < 0.05). In the 30 days before blood sampling, the PT was also negatively associated with the average PM 10 (coefficient ¼ )0.08; P < 0.05) and NO 2 (coefficient ¼ )0.08; P < 0.05). No association was found between the APTT and air pollutant levels. In addition, no consistent relations with air pollution were found for fibrinogen, antithrombin, protein C and protein S. Conclusions: This investigation shows that air pollution is associated with changes in the global coagulation function, suggesting a tendency towards hypercoagulability after short-term exposure to air pollution. Whether these changes contribute to trigger cardiovascular events remains to be established.
Background Particulate air pollution has been consistently linked to increased risk of arterial cardiovascular disease. Few data on air pollution exposure and risk of venous thrombosis are available. We investigated whether living near major traffic roads increases the risk of deep vein thrombosis (DVT), using distance from roads as a proxy for traffic exposure. Methods and Results Between 1995-2005, we examined 663 patients with DVT of the lower limbs and 859 age-matched controls from cities with population>15,000 inhabitants in Lombardia Region, Italy. We assessed distance from residential addresses to the nearest major traffic road using geographic information system methodology. The risk of DVT was estimated from logistic regression models adjusting for multiple clinical and environmental covariates. The risk of DVT was increased (Odds Ratio [OR]=1.33; 95% CI 1.03-1.71; p=0.03 in age-adjusted models; OR=1.47; 95%CI 1.10-1.96; p=0.008 in models adjusted for multiple covariates) for subjects living near a major traffic road (3 meters, 10th centile of the distance distribution) compared to those living farther away (reference distance of 245 meters, 90th centile). The increase in DVT risk was approximately linear over the observed distance range (from 718 to 0 meters), and was not modified after adjusting for background levels of particulate matter (OR=1.47; 95%CI 1.11-1.96; p=0.008 for 10th vs. 90th distance centile in models adjusting for area levels of particulate matter <10 μm in aerodynamic diameter [PM10] in the year before diagnosis). Conclusions Living near major traffic roads is associated with increased risk of DVT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.