Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.Staphylococcus aureus | vaccine | TLR7 | adjuvant | Hla C urrent antibiotics are not efficacious against emerging multidrug-resistant strains of Staphylococcus aureus, a major human pathogen. Therefore, there is an urgent need to develop vaccines to target this pathogen. Two prophylactic vaccines have been tested recently for efficacy in humans: StaphVAX, which contained capsular polysaccharides type 5 and 8 (CP5 and CP8), and V710, based on a single protein antigen (IsdB) (1, 2). Both vaccines failed in phase III efficacy trials (3, 4). On the basis of these disappointing results and taking into account that S. aureus produces a plethora of virulence and immune evasion factors, different vaccine candidates, constituted by multiple components, are currently in phase I/II trials, but efficacy data are not available yet (5). In line with the multicomponent strategy, our laboratory has undertaken a vaccine discovery project aiming at the identification of conserved antigens, which play important roles in S. aureus virulence and pathogenicity. The main objective of the study was to combine the selected antigens in the presence of appropriate adjuvants and to demonstrate protective efficacy against a panel of genetically different S. aureus clinical isolates in different mouse models. ResultsAntigen Selection. The antigens included in our candidate combination vaccine were selected among surface and secreted factors previously shown to be protective and involved in S. aureus virulence. Two of them, the ferric hydroxamat...
Streptococcus pneumoniae is a major public health threat worldwide. The recent discovery that this pathogen possesses pili led us to investigate their protective abilities in a mouse model of intraperitoneal infection. Both active and passive immunization with recombinant pilus subunits afforded protection against lethal challenge with the S. pneumoniae serotype 4 strain TIGR4.
The lupus-like autoimmune syndrome of MRL͞Mp-Tnfrsf6 lpr (lpr) mice is characterized by progressive lymphadenopathy and autoantibody production, leading to early death from renal failure. Activation of T helper lymphocytes is one of the events in the pathogenesis of the disease in these mice and likely in human systemic lupus erythematosus. Among T helper lymphocytedependent cytokines, IFN-␥ plays a pivotal role in the abnormal cell activation and the fatal development of the lpr disease. IL-18, an inducer of IFN-␥ in T lymphocytes and natural killer cells, may contribute to the disease because cells from lpr mice are hypersensitive to IL-18 and express high levels of IL-18. To assess the contribution of IL-18 to the pathogenesis in the animal model, in vivo inhibition of IL-18 was attempted. Young lpr mice were vaccinated against autologous IL-18 by repeated administration of a cDNA coding for the murine IL-18 precursor. Vaccinated mice produced autoantibodies to murine IL-18 and exhibited a significant reduction in spontaneous lymphoproliferation and IFN-␥ production as well as less glomerulonephritis and renal damage. Moreover, mortality was significantly delayed in anti-IL-18-vaccinated mice. These studies support the concept that IL-18 plays a major role in the pathogenesis of the autoimmune syndrome of lpr mice and that a reduction in IL-18 activity could be a therapeutic strategy in autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.