Prolonged high fat diets (HFD) induce low-grade chronic intestinal inflammation in mice, and diets high in saturated fat are a risk factor for the development of human inflammatory bowel diseases. We hypothesized that HFD-induced endoplasmic reticulum (ER)/oxidative stress occur in intestinal secretory goblet cells, triggering inflammatory signaling and reducing synthesis/secretion of proteins that form the protective mucus barrier. In cultured intestinal cells non-esterified long-chain saturated fatty acids directly increased oxidative/ER stress leading to protein misfolding. A prolonged HFD elevated the intestinal inflammatory cytokine signature, alongside compromised mucosal barrier integrity with a decrease in goblet cell differentiation and Muc2, a loss in the tight junction protein, claudin-1 and increased serum endotoxin levels. In Winnie mice, that develop spontaneous colitis, HFD-feeding increased ER stress, further compromised the mucosal barrier and increased the severity of colitis. In obese mice IL-22 reduced ER/oxidative stress and improved the integrity of the mucosal barrier, and reversed microbial changes associated with obesity with an increase in Akkermansia muciniphila. Consistent with epidemiological studies, our experiments suggest that HFDs are likely to impair intestinal barrier function, particularly in early life, which partially involves direct effects of free-fatty acids on intestinal cells, and this can be reversed by IL-22 therapy.
Eight genes have been identified that function in the regulation, biosynthesis, and transport of rhizobactin 1021, a hydroxamate siderophore produced under iron stress by Sinorhizobium meliloti. The genes were sequenced, and transposon insertion mutants were constructed for phenotypic analysis. Six of the genes, named rhbABCDEF, function in the biosynthesis of the siderophore and were shown to constitute an operon that is repressed under iron-replete conditions. Another gene in the cluster, named rhtA, encodes the outer membrane receptor protein for rhizobactin 1021. It was shown to be regulated by iron and to encode a product having 61% similarity to IutA, the outer membrane receptor for aerobactin. Transcription of both the rhbABCDEF operon and the rhtA gene was found to be positively regulated by the product of the eighth gene in the cluster, named rhrA, which has characteristics of an AraC-type transcriptional activator. The six genes in the rhbABCDEF operon have interesting gene junctions with short base overlaps existing between the genes. Similarities between the protein products of the biosynthesis genes and other proteins suggest that rhizobactin 1021 is synthesized by the formation of a novel siderophore precursor, 1,3-diaminopropane, which is then modified and attached to citrate in steps resembling those of the aerobactin biosynthetic pathway. The cluster of genes is located on the pSyma megaplasmid of S. meliloti 2011. Reverse transcription-PCR with RNA isolated from mature alfalfa nodules yielded no products for rhbF or rhtA at a time when the nifH gene was strongly expressed, indicating that siderophore biosynthesis and transport genes are not strongly expressed when nitrogenase is being formed in root nodules. Mutants having transposon insertions in the biosynthesis or transport genes induced effective nitrogen-fixing nodules on alfalfa plants.
Lynch et al. provide evidence of a causal relationship between RSV-bronchiolitis and asthma development and highlight a common but age-related Sema4a-mediated pathway by which pDCs and microbial colonization induce T reg cell expansion to confer protection against severe bronchiolitis and asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.