SummaryBackgroundAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons, associated with frontotemporal dementia (FTD) in about 14% of incident cases. We assessed the frequency of the recently identified C9orf72 repeat expansion in familial and apparently sporadic cases of ALS and characterised the cognitive and clinical phenotype of patients with this expansion.MethodsA population-based register of patients with ALS has been in operation in Ireland since 1995, and an associated DNA bank has been in place since 1999. 435 representative DNA samples from the bank were screened using repeat-primed PCR for the presence of a GGGGCC repeat expansion in C9orf72. We assessed clinical, cognitive, behavioural, MRI, and survival data from 191 (44%) of these patients, who comprised a population-based incident group and had previously participated in a longitudinal study of cognitive and behavioural changes in ALS.FindingsSamples from the DNA bank included 49 cases of known familial ALS and 386 apparently sporadic cases. Of these samples, 20 (41%) cases of familial ALS and 19 (5%) cases of apparently sporadic ALS had the C9orf72 repeat expansion. Of the 191 patients for whom phenotype data were available, 21 (11%) had the repeat expansion. Age at disease onset was lower in patients with the repeat expansion (mean 56·3 [SD 8·3] years) than in those without (61·3 [10·6] years; p=0·043). A family history of ALS or FTD was present in 18 (86%) of those with the repeat expansion. Patients with the repeat expansion had significantly more co-morbid FTD than patients without the repeat (50% vs 12%), and a distinct pattern of non-motor cortex changes on high-resolution 3 T magnetic resonance structural neuroimaging. Age-matched univariate analysis showed shorter survival (20 months vs 26 months) in patients with the repeat expansion. Multivariable analysis showed an increased hazard rate of 1·9 (95% 1·1–3·7; p=0·035) in those patients with the repeat expansion compared with patients without the expansionInterpretationPatients with ALS and the C9orf72 repeat expansion seem to present a recognisable phenotype characterised by earlier disease onset, the presence of cognitive and behavioural impairment, specific neuroimaging changes, a family history of neurodegeneration with autosomal dominant inheritance, and reduced survival. Recognition of patients with ALS who carry an expanded repeat is likely to be important in the context of appropriate disease management, stratification in clinical trials, and in recognition of other related phenotypes in family members.FundingHealth Seventh Framework Programme, Health Research Board, Research Motor Neuron, Irish Motor Neuron Disease Association, The Motor Neurone Disease Association of Great Britain and Northern Ireland, ALS Association.
Frontotemporal dementia (FTD) phenotypes have distinctive and well-established cortical signatures, but their subcortical grey matter profiles are poorly characterised. The comprehensive characterisation of striatal and thalamic pathology along the ALS-FTD spectrum is particularly timely, as dysfunction of frontostriatal and cortico-thalamic networks contribute to phenotype-defining cognitive, behavioral, and motor deficits. Ten patients with behavioral-variant FTD, 11 patients with non-fluent-variant primary progressive aphasia, 5 patients with semantic-variant primary progressive aphasia, 14 ALS-FTD patients with C9orf72 hexanucleotide expansions, 12 ALS-FTD patients without hexanucleotide repeats, 36 ALS patients without cognitive impairment and 50 healthy controls were included in a prospective neuroimaging study. Striatal, thalamic, hippocampal and amygdala pathology was evaluated using volume measurements, density analyses and connectivity-based segmentation. Significant volume reductions were identified in the thalamus and putamen of non-fluent-variant PPA patients. Marked nucleus accumbens and hippocampal atrophy was observed in the behavioral-variant FTD cohort. Semantic-variant PPA patients only exhibited volumetric changes in the left hippocampus. C9-positive ALS-FTD patients showed preferential density reductions in thalamic sub-regions connected to motor and sensory cortical areas. C9-negative ALS-FTD patients exhibited striatal pathology in sub-regions projecting to rostral-motor and executive cortical areas. The bulk of striatal and thalamic pathology in non-fluent-variant PPA patients was identified in foci projecting to motor areas. Subcortical density alterations in svPPA patients were limited to basal ganglia regions with parietal projections. Striatal and thalamic changes in FTD exhibit selective, network-defined vulnerability patterns mirroring cortical pathology. Multi-modal cortico-basal imaging analyses confirm that the subcortical grey matter profiles of FTD phenotypes are just as distinct as their cortical signatures. Our findings support emerging concepts of network-wise degeneration, preferential circuit vulnerability and disease propagation along connectivity patterns.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting motor function, with additional evidence of extensive nonmotor involvement. Despite increasing recognition of the disease as a multisystem network disorder characterised by impaired connectivity, the precise neuroelectric characteristics of impaired cortical communication remain to be fully elucidated. Here, we characterise changes in functional connectivity using beamformer source analysis on resting‐state electroencephalography recordings from 74 ALS patients and 47 age‐matched healthy controls. Spatiospectral characteristics of network changes in the ALS patient group were quantified by spectral power, amplitude envelope correlation (co‐modulation) and imaginary coherence (synchrony). We show patterns of decreased spectral power in the occipital and temporal (δ‐ to β‐band), lateral/orbitofrontal (δ‐ to θ‐band) and sensorimotor (β‐band) regions of the brain in patients with ALS. Furthermore, we show increased co‐modulation of neural oscillations in the central and posterior (δ‐, θ‐ and γl‐band) and frontal (δ‐ and γl‐band) regions, as well as decreased synchrony in the temporal and frontal (δ‐ to β‐band) and sensorimotor (β‐band) regions. Factorisation of these complex connectivity patterns reveals a distinct disruption of both motor and nonmotor networks. The observed changes in connectivity correlated with structural MRI changes, functional motor scores and cognitive scores. Characteristic patterned changes of cortical function in ALS signify widespread disease‐associated network disruption, pointing to extensive dysfunction of both motor and cognitive networks. These statistically robust findings, that correlate with clinical scores, provide a strong rationale for further development as biomarkers of network disruption for future clinical trials.
Amyotrophic lateral sclerosis (ALS) is a terminal progressive adult-onset neurodegeneration of the motor system. Although originally considered a pure motor degeneration, there is increasing evidence of disease heterogeneity with varying degrees of extra-motor involvement. How the combined motor and nonmotor degeneration occurs in the context of broader disruption in neural communication across brain networks has not been well characterized. Here, we have performed high-density crossectional and longitudinal resting-state electroencephalography (EEG) recordings on 100 ALS patients and 34 matched controls, and have identified characteristic patterns of altered EEG connectivity that have persisted in longitudinal analyses. These include strongly increased EEG coherence between parietal-frontal scalp regions (in γ-band) and between bilateral regions over motor areas (in θ-band). Correlation with structural MRI from the same patients shows that disease-specific structural degeneration in motor areas and corticospinal tracts parallels a decrease in neural activity over scalp motor areas, while the EEG over the scalp regions associated with less extensively involved extra-motor regions on MRI exhibit significantly increased neural communication. Our findings demonstrate that EEG-based connectivity mapping can provide novel insights into progressive network decline in ALS. These data pave the way for development of validated cost-effective spectral EEG-based biomarkers that parallel changes in structural imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.