A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr(-1) since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (similar to 0.4 Pg C yr(-1)) or sequestered in sediments (similar to 0.5 Pg C yr(-1)) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of similar to 0.1 Pg C yr(-1) to the open ocean. According to our analysis, terrestrial ecosystems store similar to 0.9 Pg C yr(-1) at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr(-1) previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land-ocean aquatic continuum need to be included in global carbon dioxide budgets
[1] Precision requirements are determined for space-based column-averaged CO 2 dry air mole fraction (X CO 2 ) data. These requirements result from an assessment of spatial and temporal gradients in X CO 2 , the relationship between X CO 2 precision and surface CO 2 flux uncertainties inferred from inversions of the X CO 2 data, and the effects of X CO 2 biases on the fidelity of CO 2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these X CO 2 data precision requirements.
We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition and compare this to fluvial inputs and dinitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate that about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological dinitrogen fixation is the main external source of nitrogen to the open ocean, i.e., beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land-based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of~0.4% (equivalent to an uptake of 0.15 Pg C yr À1 and less than the Duce et al. (2008) estimate). The resulting reduction in climate change forcing from this ocean CO 2 uptake is offset to a small extent by an increase in ocean N 2 O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.