Vitamin E is considered a major antioxidant in biomembranes, but little evidence exists for this function in plants under photooxidative stress. Leaf discs of two vitamin E mutants, a tocopherol cyclase mutant (vte1) and a homogentisate phytyl transferase mutant (vte2), were exposed to high light stress at low temperature, which resulted in bleaching and lipid photodestruction. However, this was not observed in whole plants exposed to long-term high light stress, unless the stress conditions were extreme (very low temperature and very high light), suggesting compensatory mechanisms for vitamin E deficiency under physiological conditions. We identified two such mechanisms: nonphotochemical energy dissipation (NPQ) in photosystem II (PSII) and synthesis of zeaxanthin. Inhibition of NPQ in the double mutant vte1 npq4 led to a marked photoinhibition of PSII, suggesting protection of PSII by tocopherols. vte1 plants accumulated more zeaxanthin in high light than the wild type, and inhibiting zeaxanthin synthesis in the vte1 npq1 double mutant resulted in PSII photoinhibition accompanied by extensive oxidation of lipids and pigments. The single mutants npq1, npq4, vte2, and vte1 showed little sensitivity to the stress treatments. We conclude that, in cooperation with the xanthophyll cycle, vitamin E fulfills at least two different functions in chloroplasts at the two major sites of singlet oxygen production: preserving PSII from photoinactivation and protecting membrane lipids from photooxidation.
We provide here an exhaustive overview of the glutathione (GSH) peroxidase (Gpx) family of poplar (Populus trichocarpa). Although these proteins were initially defined as GSH dependent, in fact they use only reduced thioredoxin (Trx) for their regeneration and do not react with GSH or glutaredoxin, constituting a fifth class of peroxiredoxins. The two chloroplastic Gpxs display a marked selectivity toward their electron donors, being exclusively specific for Trxs of the y type for their reduction. In contrast, poplar Gpxs are much less specific with regard to their electron-accepting substrates, reducing hydrogen peroxide and more complex hydroperoxides equally well. Site-directed mutagenesis indicates that the catalytic mechanism and the Trx-mediated recycling process involve only two (cysteine [Cys]-107 and Cys-155) of the three conserved Cys, which form a disulfide bridge with an oxidation-redox midpoint potential of 2295 mV. The reduction/formation of this disulfide is detected both by a shift on sodium dodecyl sulfate-polyacrylamide gel electrophoresis or by measuring the intrinsic tryptophan fluorescence of the protein. The six genes identified coding for Gpxs are expressed in various poplar organs, and two of them are localized in the chloroplast, with one colocalizing in mitochondria, suggesting a broad distribution of Gpxs in plant cells. The abundance of some Gpxs is modified in plants subjected to environmental constraints, generally increasing during fungal infection, water deficit, and metal stress, and decreasing during photooxidative stress, showing that Gpx proteins are involved in the response to both biotic and abiotic stress conditions.
Two types of methionine (Met) sulfoxide reductases (Msr) catalyze the reduction of Met sulfoxide (MetSO) back to Met. MsrA, well characterized in plants, exhibits an activity restricted to the Met-S-SO-enantiomer. Recently, a new type of Msr enzyme, called MsrB, has been identified in various organisms and shown to catalytically reduce the R-enantiomer of MetSO. In plants, very little information is available about MsrB and we focused our attention on Arabidopsis (Arabidopsis thaliana) MsrB proteins. Searching Arabidopsis genome databases, we have identified nine open reading frames encoding proteins closely related to MsrB proteins from bacteria and animal cells. We then analyzed the activity and abundance of the two chloroplastic MsrB proteins, MsrB1 and MsrB2. Both enzymes exhibit an absolute R-stereospecificity for MetSO and a higher catalytic efficiency when using protein-bound MetSO as a substrate than when using free MetSO. Interestingly, we observed that MsrB2 is reduced by thioredoxin, whereas MsrB1 is not. This feature of MsrB1 could result from the lack of the catalytical cysteine (Cys) corresponding to Cys-63 in Escherichia coli MsrB that is involved in the regeneration of Cys-117 through the formation of an intramolecular disulfide bridge followed by thioredoxin reduction. We investigated the abundance of plastidial MsrA and B in response to abiotic (water stress, photooxidative treatment) and biotic (rust fungus) stresses and we observed that MsrA and B protein levels increase in response to the photooxidative treatment. The possible role of plastidic MsrB in the tolerance to oxidative damage is discussed.Oxygen is essential to all aerobic organisms but can also lead to many harmful effects (Davies, 1995). Proteins are easily damaged by reactive oxygen species, with Met being one of the amino acid residues most susceptible to oxidation (Dann and Pell, 1989). The generation of Met sulfoxide (MetSO) is mediated by various biological oxidants such as hydrogen peroxide, hydroxyl radicals, ozone as well as by metals, and results in modifications of activity and conformation for many proteins (Gao et al., 1998;Davis et al., 2000). Oxidation of Met residues is readily reversed by the action of an enzyme initially referred as peptide MetSO reductase (PMSR), which catalyzes the thioredoxin-dependent reduction of MetSO back to Met (Brot et al., 1981). The enzyme is present in most living organisms and has been described as belonging to the minimal set of proteins sufficient for cell life (Mushegian and Koonin, 1996). PMSR has a protective role against oxidative damage (Moskovitz et al., 1997).Indeed, pmsr null mutants of Escherichia coli and Saccharomyces cerevisiae show a decreased resistance toward oxidative stress conditions (Moskovitz et al., 1995(Moskovitz et al., , 1997. Accordingly, PMSR overexpression in S. cerevisiae or in human T-cells results in an increased resistance to oxidative treatments (Moskovitz et al., 1998). The first PMSR has been renamed Met sulfoxide reductase A (MsrA) and has been sh...
The chloroplastic drought-induced stress protein of 32 kD (CDSP32) is composed of two thioredoxin modules and is induced by environmental and oxidative stress conditions. We investigated whether the plastidic protein BAS1, which is related to eubacterial 2-Cys peroxiredoxin, is a target for CDSP32. Using a CDSP32 active-site mutant, we showed that the BAS1 and CDSP32 proteins form a mixed disulfide complex in vitro. Moreover, affinity chromatography indicated that BAS1 is a major target for CDSP32 in chloroplasts. CDSP32 was able to reduce BAS1 in vitro, and BAS1 displayed CDSP32-dependent peroxidase activity. The function of CDSP32 was investigated in transgenic potato lines without detectable levels of the protein as a result of cosuppression. Under conditions of photooxidative stress induced by incubation with either methyl viologen or t -butyl hydroperoxide or by exposure to low temperature under high light, plants lacking CDSP32 exhibited decreased maximal photosystem II photochemical efficiencies compared with the wild type and transgenic controls. In addition, plants without CDSP32 retained much less chlorophyll than controls under stress, indicating increased damage to photosynthetic membranes. We conclude that CDSP32 is a thioredoxin with a critical role in plastid defense against oxidative damage and that this role is related to its function as a physiological electron donor to the BAS1 peroxiredoxin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.