Abstract. One of the most spectacular phenomena in physics in terms of dynamical range is the glass transition and the associated slowing down of flow and relaxation with decreasing temperature. That it occurs in many different liquids seems to call for a "universal" theory. In this article, we review one such theoretical approach which is based on the concept of "frustration". Frustration in this context describes an incompatibility between extension of the locally preferred order in a liquid and tiling of the whole space. We provide a critical assessment of what has been achieved within this approach and we discuss the relation with other theories of the glass transition.
The adsorption or adhesion of large particles (proteins, colloids, cells, . . . ) at the liquid-solid interface plays an important role in many diverse applications. Despite the apparent complexity of the process, two features are particularly important: 1) the adsorption is often irreversible on experimental time scales and 2) the adsorption rate is limited by geometric blockage from previously adsorbed particles. A coarse-grained description that encompasses these two properties is provided by sequential adsorption models whose simplest example is the random sequential adsorption (RSA) process. In this article, we review the theoretical formalism and tools that allow the systematic study of kinetic and structural aspects of these sequential adsorption models. We also show how the reference RSA model may be generalized to account for a variety of experimental features including particle anisotropy, polydispersity, bulk diffusive transport, gravitational effects, surface-induced conformational and orientational change, desorption, and multilayer formation. In all cases, the significant theoretical results are presented and their accuracy (compared to computer simulation) and applicability (compared to experiment) are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.