The long pentraxin (PTX) 3 is produced by macrophages and myeloid dendritic cells in response to Toll-like receptor agonists and represents a nonredundant component of humoral innate immunity against selected pathogens. We report that, unexpectedly, PTX3 is stored in specific granules and undergoes release in response to microbial recognition and inflammatory signals. Released PTX3 can partially localize in neutrophil extracellular traps formed by extruded DNA. Eosinophils and basophils do not contain preformed PTX3. PTX3-deficient neutrophils have defective microbial recognition and phagocytosis, and PTX3 is nonredundant for neutrophil-mediated resistance against Aspergillus fumigatus. Thus, neutrophils serve as a reservoir, ready for rapid release, of the long PTX3, a key component of humoral innate immunity with opsonic activity.
Some exogenous antigens, such as heat shock proteins or apoptotic bodies, gain access to the MHC class I processing pathway and initiate CTL responses, a process called cross-priming. To be efficient in vivo, this process requires endocytosis of the antigen by dendritic cells via receptors which remain unidentified. Here, we report that scavenger receptors are the main HSP binding structures on human dendritic cells and identify LOX-1 as one of these molecules. A neutralizing anti-LOX-1 mAb inhibits Hsp70 binding to dendritic cells and Hsp70-induced antigen cross-presentation. In vivo, to target LOX-1 with a tumor antigen using an anti-LOX-1 mAb induces antitumor immunity. Thus, the scavenger receptor LOX-1 is certainly a promising target for cancer immunotherapy.
TLRs are involved in innate cell activation by conserved structures expressed by microorganisms. Human T cells express the mRNA encoding most of TLRs. Therefore, we tested whether some TLR ligands may modulate the function of highly purified human CD4+ T lymphocytes. We report that, in the absence of APCs, flagellin (a TLR5 ligand) and R-848 (a TLR7/8 ligand) synergized with suboptimal concentrations of TCR-dependent (anti-CD3 mAb) or -independent stimuli (anti-CD2 mAbs or IL-2) to up-regulate proliferation and IFN-γ, IL-8, and IL-10 but not IL-4 production by human CD4+ T cells. No effect of poly(I:C) and LPS, ligands for TLR3 and TLR4, respectively, was detected. We also observed that CD4+CD45RO+ memory T cell responses to TLR ligands were more potent than those observed with CD4+CD45RA+ naive T cells. Moreover, among the memory T cells, CCR7− effector cells were more sensitive to TLR ligands than CCR7+ central memory cells. These data demonstrate for the first time a direct effect of TLR5 and TLR7/8 ligands on human T cells, and highlight an innate arm in T cell functions. They also suggest that some components from invading microorganisms may directly stimulate effector memory T cells located in tissues by up-regulating cytokine and chemokine production.
IntroductionCirculating monocytes are precursors that can differentiate into a variety of tissue-resident macrophages (M⌽s) or dendritic cells (DCs), and even osteoclasts. 1 M⌽s exhibit a variety of activities, some of which are in opposition (ie, proinflammatory versus anti-inflammatory, immunostimulatory versus immunosuppressive, and tissue destructive versus reconstructive). 1 The functional heterogeneity of M⌽s depends, at least in part, on the local microenvironment. 2,3 In analogy with the Th1/Th2 dichotomy of T-cell responses, M⌽s exposed to IFN␥ or IL-4 have been referred to as M1s or M2s (also called alternatively activated M⌽s), respectively. 4 M1s produce IL-12 and TNF␣ and are potent killers of microorganisms (especially intracellular pathogens) and tumor cells. M2s produce IL-10 but not IL-12, scavenge debris, tune inflammatory responses, and promote humoral immunity and tissue repair. 5 The detection in cancer patients of tumor-specific T cells that kill ex vivo autologous tumor cells demonstrates that numerous tumor-cell types are potentially immunogenic. However, spontaneous clearance of established tumors by immune mechanisms is rare and active antitumor immunotherapy usually has poor clinical efficacy. 6 It is now largely documented that established tumors propagate conditions that favor their immune escape. 6 Tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) accumulate at tumor sites and maintain immune tolerance that contributes to defeating tumor immunity. 6,7 TAMs are far more abundant than Tregs and, in various solid tumors, constitute the major components of the leukocyte infiltrate. In most cases, especially breast, prostate, cervical, and ovarian cancers, TAM density is correlated with poor prognosis. [8][9][10] Strong evidence suggests that TAMs also promote cancer progression and metastasis. 8,11,12 TAMs are polarized M2 cells with potent immunosuppressive functions. They have poor antigen-presenting capacity, prevent T-cell activation, and may contribute to suppressing DC functions. 4,13,14 They also promote the recruitment of Tregs and Th2 cells (through CC chemokine ligand 17 [CCL17] and CCL22 secretion) and naive T cells (through CCL18). Naive T-cell activation, in an environment dominated by immature DCs and TAMs, is likely to induce anergy. 10,15 In addition, TAM production of growth and angiogenic factors (ie, vascular endothelial growth factor [VEGF] and platelet-derived endothelial cell growth factor [PDGF]), proteases (ie, matrix metalloproteinase 9 [MMP9]), and chemokines (eg, CCL2) favors tumor-cell proliferation, angiogenesis, dissolution of connective tissues, and metastasis. 8,12,14,16 The origin of TAMs has mostly been studied in mice in terms of precursor recruitment, survival, and proliferation. TAMs derive from circulating monocytes that are recruited into tumors by chemotactic factors, such as monocyte-colony-stimulating factor Submitted February 19, 2007; accepted August 29, 2007. Prepublished online as Blood First Edition paper, September 11, 2...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.