Skeletal muscle can bear a high load at constant length, or shorten rapidly when the load is low. This force-velocity relationship is the primary determinant of muscle performance in vivo. Here we exploited the quasi-crystalline order of myosin II motors in muscle filaments to determine the molecular basis of this relationship by X-ray interference and mechanical measurements on intact single cells. We found that, during muscle shortening at a wide range of velocities, individual myosin motors maintain a force of about 6 pN while pulling an actin filament through a 6 nm stroke, then quickly detach when the motor reaches a critical conformation. Thus we show that the force-velocity relationship is primarily a result of a reduction in the number of motors attached to actin in each filament in proportion to the filament load. These results explain muscle performance and efficiency in terms of the molecular mechanism of the myosin motor.
Abstract:The ability of marrow-derived osteoprogenitor cells to promote repair of critical-size tibial gaps upon autologous transplantation on a hydroxyapatite ceramic (HAC) carrier was tested in a sheep model. Conditions for in vitro expansion of sheep bone marrow stromal cells (BMSC) were established and the osteogenic potential of the expanded cells was validated. Ectopic implantation of sheep BMSC in immunocompromised mice led to extensive bone formation. When used to repair tibial gaps in sheep, cellloaded implants (n = 2) conducted a far more extensive bone formation than did cell-free HAC cylinders (n = 2) over a 2-month period. In cell-loaded implants, bone formation was found to occur both within the internal macropore space and around the HAC cylinder while in control cellfree implants, bone formation was limited mostly to the outer surface and was not observed in most of the inner pores. As tested in an indentation assay, the stiffness of the complex HAC-bone material was found to be higher in cellloaded implants compared to controls. Our pilot study on a limited number of large-sized animals suggests that the use of autologous BMSC in conjunction with HAC-based carriers results in faster bone repair compared to HAC alone. Potentially this combination could be used clinically in the treatment of extensive long bone defects.
The contraction of striated muscle (skeletal and cardiac muscle) is generated by ATP-dependent interactions between the molecular motor myosin II and the actin filament. The myosin motors are mechanically coupled along the thick filament in a geometry not achievable by single-molecule experiments. Here we show that a synthetic one-dimensional nanomachine, comprising fewer than ten myosin II dimers purified from rabbit psoas, performs isometric and isotonic contractions at 2 mM ATP, delivering a maximum power of 5 aW. The results are explained with a kinetic model fitted to the performance of mammalian skeletal muscle, showing that the condition for the motor coordination that maximises the efficiency in striated muscle is a minimum of 32 myosin heads sharing a common mechanical ground. The nanomachine offers a powerful tool for investigating muscle contractile-protein physiology, pathology and pharmacology without the potentially disturbing effects of the cytoskeletal—and regulatory—protein environment.
Muscle contraction is driven by a change in the structure of the head domain of myosin, the "working stroke" that pulls the actin filaments toward the midpoint of the myosin filaments. This movement of the myosin heads can be measured very precisely in intact muscle cells by X-ray interference, but until now this technique has not been applied to physiological activation and force generation following electrical stimulation of muscle cells. By using this approach, we show that the long axes of the myosin head domains are roughly parallel to the filaments in resting muscle, with their center of mass offset by approximately 7 nm from the C terminus of the head domain. The observed mass distribution matches that seen in electron micrographs of isolated myosin filaments in which the heads are folded back toward the filament midpoint. Following electrical stimulation, the heads move by approximately 10 nm away from the filament midpoint, in the opposite direction to the working stroke. The time course of this motion matches that of force generation, but is slower than the other structural changes in the myosin filaments on activation, including the loss of helical and axial order of the myosin heads and the change in periodicity of the filament backbone. The rate of force development is limited by that of attachment of myosin heads to actin in a conformation that is the same as that during steadystate isometric contraction; force generation in the actin-attached head is fast compared with the attachment step.C ontraction of skeletal muscles is driven by a cyclical interaction between myosin and actin, fueled by the hydrolysis of ATP. The myosin and actin are polymerized into parallel thick and thin filaments, which themselves are organized into a hexagonal array in the muscle cell. The head domains of myosin lie on the surface of the thick filaments and bind to actin in the thin filaments. Filament sliding is driven by a change in conformation of the actin-bound myosin head: its working stroke (1-3). A detailed molecular model for the working stroke has been derived from biochemical and structural studies of isolated myosin head domains and their interaction with actin and ATP (3-6), and the quasi-crystalline organization of myosin and actin in muscle has allowed this model to be tested and elaborated by mechanical and structural studies on muscle cells (1, 2, 7-11).Many of these cell-based studies used rapid perturbations to synchronize the actions of the myosin heads in a muscle cell. Typically, the length of an active muscle fiber was rapidly decreased, displacing each set of myosin filaments by a few nanometers with respect to the opposing actin filaments (2). Such a shortening step produces an elastic force decrease during the step, followed in the next few milliseconds by rapid force regeneration driven by the working stroke in actin-attached myosin heads (2,7,8). This and related protocols have revealed fundamental properties of the working stroke, including its size, speed, and load dependence, and shown how ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.