This paper addresses classification problems in which the class membership of training data is only partially known. Each learning sample is assumed to consist in a feature vector xi ∈ X and an imprecise and/or uncertain "soft" label mi defined as a Dempster-Shafer basic belief assignment over the set of classes. This framework thus generalizes many kinds of learning problems including supervised, unsupervised and semi-supervised learning. Here, it is assumed that the feature vectors are generated from a mixture model. Using the Generalized Bayesian Theorem, an extension of Bayes' theorem in the belief function framework, we derive a criterion generalizing the likelihood function. A variant of the EM algorithm dedicated to the optimization of this criterion is proposed, allowing us to compute estimates of model parameters. Experimental results demonstrate the ability of this approach to exploit partial information about class labels.
Mixture model-based clustering, usually applied to multidimensional data, has become a popular approach in many data analysis problems, both for its good statistical properties and for the simplicity of implementation of the Expectation-Maximization (EM) algorithm. Within the context of a railway application, this paper introduces a novel mixture model for dealing with time series that are subject to changes in regime. The proposed approach, called ClustSeg, consists in modeling each cluster by a regression model in which the polynomial coefficients vary according to a discrete hidden process. In particular, this approach makes use of logistic functions to model the (smooth or abrupt) transitions between regimes. The model parameters are estimated by the maximum likelihood method solved by an Expectation-Maximization algorithm. This approach can also be regarded as a clustering approach which operates by finding groups of time series having common changes in regime. In addition to providing a time series partition, it therefore provides a time series segmentation. The problem of selecting the optimal numbers of clusters and segments is solved by means of the Bayesian Information Criterion (BIC). The ClustSeg approach is shown to be efficient using a variety of simulated time series and real-world time series of electrical power consumption from rail switching operations. Mixture model, Regression mixture, Hidden logistic proces
A new approach for functional data description is proposed in this paper. It consists of a regression model with a discrete hidden logistic process which is adapted for modeling curves with abrupt or smooth regime changes. The model parameters are estimated in a maximum likelihood framework through a dedicated Expectation Maximization (EM) algorithm. From the proposed generative model, a curve discrimination rule is derived using the Maximum A Posteriori rule. The proposed model is evaluated using simulated curves and real world curves acquired during railway switch operations, by performing comparisons with the piecewise regression approach in terms of curve modeling and classification.
Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.
International audienceThis paper addresses the problem of fault detection and isolation in railway track circuits. A track circuit can be considered as a large-scale system composed of a series of trimming capacitors located between a transmitter and a receiver. A defective capacitor affects not only its own inspection data (short circuit current) but also the measurements related to all capacitors located downstream (between the defective capacitor and the receiver). Here, the global fault detection and isolation problem is broken down into several local pattern recognition problems, each dedicated to one capacitor. The outputs from local neural network or decision tree classifiers are expressed using the Dempster–Shafer theory and combined to make a final decision on the detection and localization of a fault in the system. Experiments with simulated data show that correct detection rates over 99% and correct localization rates over 92% can be achieved using this approach, which represents a major improvement over the state of the art reference method
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.