While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the “low hanging fruit” of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation.
Newly emerging health technologies are being developed to care for children with complex cardiac defects. Neurodevelopmental and childhood school-related outcomes are of great interest to parents of children receiving this care, care providers, and healthcare administrators. Since the 1970s, neonatal follow-up clinics have provided service, audit, and research for preterm infants as care for these at-risk children evolved. We have chosen to present for this issue the mechanism for longitudinal follow-up of survivors that we have developed for western Canada patterned after neonatal follow-up. Our program provides registration for young children receiving complex cardiac surgery, heart transplantation, ventricular assist device support, and extracorporeal life support among others. The program includes multidisciplinary assessments with appropriate neurodevelopmental intervention, active quality improvement evaluations, and outcomes research. Through this mechanism, consistently high (96%) follow-up over two years is maintained.
Neonates affected by deletion 22q11.2 and having neonatal complex cardiac surgery have significantly worse neurodevelopmental outcome than do those without deletion 22q11.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.