Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/β3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.
Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.
Introduction The current shortage of accurate and readily available, validated biomarkers of disease severity in sepsis is an important limitation when attempting to stratify patients into homogeneous groups, in order to study pathogenesis or develop therapeutic interventions. The aim of the present study was to determine the cytokine profile in plasma of patients with severe sepsis by using a multiplex system for simultaneous detection of 17 cytokines.
After apoptosis, phagocytes prevent inflammation and tissue damage by the uptake and removal of dead cells. In addition, apoptotic cells evoke an anti-inflammatory response through macrophages. We have previously shown that there is intense lymphocyte apoptosis in an experimental model of Chagas' disease, a debilitating cardiac illness caused by the protozoan Trypanosoma cruzi. Here we show that the interaction of apoptotic, but not necrotic T lymphocytes with macrophages infected with T. cruzi fuels parasite growth in a manner dependent on prostaglandins, transforming growth factor-beta (TGF-beta) and polyamine biosynthesis. We show that the vitronectin receptor is critical, in both apoptotic-cell cytoadherence and the induction of prostaglandin E2/TGF-beta release and ornithine decarboxylase activity in macrophages. A single injection of apoptotic cells in infected mice increases parasitaemia, whereas treatment with cyclooxygenase inhibitors almost completely ablates it in vivo. These results suggest that continual lymphocyte apoptosis and phagocytosis of apoptotic cells by macrophages have a role in parasite persistence in the host, and that cyclooxygenase inhibitors have potential therapeutic application in the control of parasite replication and spread in Chagas' disease.
Differentiation of macrophages into foamy (lipid-laden) macrophages is a common pathological observation in tuberculous granulomas both in experimental settings as well as in clinical conditions; however, the mechanisms that regulate intracellular lipid accumulation in the course of mycobacterial infection and their significance to pathophysiology of tuberculosis are not well understood. In this study, we investigated the mechanisms of formation and function of lipid-laden macrophages in a murine model of tuberculosis. Mycobacterium bovis bacillus Calmette-Guérin (BCG), but not Mycobacterium smegmatis, induced a dose- and time-dependent increase in lipid body-inducible nonmembrane-bound cytoplasmic lipid domain size and numbers. Lipid body formation was drastically inhibited in TLR2-, but not in TLR4-deficient mice, indicating a role for TLR2 in BCG recognition and signaling to form lipid bodies. Increase in lipid bodies during infection correlated with increased generation of PGE2 and localization of cyclooxygenase-2 within lipid bodies. Moreover, we demonstrated by intracellular immunofluorescent localization of newly formed eicosanoid that lipid bodies were the predominant sites of PGE2 synthesis in activated macrophages. Our findings demonstrated that BCG-induced lipid body formation is TLR2 mediated and these structures function as signaling platforms in inflammatory mediator production, because compartmentalization of substrate and key enzymes within lipid bodies has impact on the capacity of activated leukocytes to generate increased amounts of eicosanoids during experimental infection by BCG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.