The dayside of HD 149026b is near the edge of detectability by the Spitzer Space Telescope. We report on eleven secondary-eclipse events at 3.6, 4.5, 3 × 5.8, 4 × 8.0, and 2 × 16 µm plus three primary-transit events at 8.0 µm. The eclipse depths from jointly-fit models at each wavelength are 0.040 ± 0.003% at 3.6 µm, 0.034 ± 0.006% at 4.5 µm, 0.044 ± 0.010% at 5.8 µm, 0.052 ± 0.006% at 8.0 µm, and 0.085 ± 0.032% at 16 µm. Multiple observations at the longer wavelengths improved eclipse-depth signal-to-noise ratios by up to a factor of two and improved estimates of the planet-to-star radius ratio (R p /R ⋆ = 0.0518 ± 0.0006). We also identify no significant deviations from a circular orbit and, using this model, report an improved period of 2.8758916 ± 0.0000014 days. Chemical-equilibrium models find no indication of a temperature inversion in the dayside atmosphere of HD 149026b. Our best-fit model favors large amounts of CO and CO 2 , moderate heat redistribution ( f = 0.5), and a strongly enhanced metallicity. These analyses use BiLinearly-Interpolated Subpixel Sensitivity (BLISS) mapping, a new technique to model two position-dependent systematics (intrapixel variability and pixelation) by mapping the pixel surface at high resolution. BLISS mapping outperforms previous methods in both speed and goodness of fit. We also present an orthogonalization technique for linearly-correlated parameters that accelerates the convergence of Markov chains that employ the Metropolis random walk sampler. The electronic supplement contains light-curve files and supplementary figures.
High-resolution Doppler-resolved spectroscopy has opened up a new window into the atmospheres of both transiting and non-transiting exoplanets. Here, we present VLT/UVES observations of a transit of WASP-121b, an 'ultra-hot' Jupiter previously found to exhibit a temperature inversion and detections of multiple species at optical wavelengths. We present initial results using the blue arm of UVES (≈3700 -5000Å), recovering a clear signal of neutral Fe in the planet's atmosphere at >8 σ, which could contribute to (or even fully explain) the temperature inversion in the stratosphere. However, using standard cross-correlation methods, it is difficult to extract physical parameters such as temperature and abundances. Recent pioneering efforts have sought to develop likelihood 'mappings' that can be used to directly fit models to high-resolution datasets. We introduce a new framework that directly computes the likelihood of the model fit to the data, and can be used to explore the posterior distribution of parameterised model atmospheres via MCMC techniques. Our method also recovers the physical extent of the atmosphere, as well as account for time-and wavelength-dependent uncertainties. We measure a temperature of 3710 +490 −510 K, indicating a higher temperature in the upper atmosphere when compared to low-resolution observations. We also show that the Fe i signal is physically separated from the exospheric Fe ii. However, the temperature measurements are highly degenerate with aerosol properties; detection of additional species, using more sophisticated atmospheric models, or combining these methods with low-resolution spectra should help break these degeneracies.
We report on the detection of a transit of the super-Earth 55 Cnc e with warm Spitzer in IRAC's 4.5 μm band. Our MCMC analysis includes an extensive modeling of the systematic effects affecting warm Spitzer photometry, and yields a transit depth of 410±63 ppm, which translates to a planetary radius of 2.08 +0.16 −0.17 R ⊕ as measured in IRAC 4.5 μm channel. A planetary mass of 7.81 +0.58 −0.53 M ⊕ is derived from an extensive set of radial-velocity data, yielding a mean planetary density of 4.78 +1.31 −1.20 g cm −3 . Thanks to the brightness of its host star (V = 6, K = 4), 55 Cnc e is a unique target for the thorough characterization of a super-Earth orbiting around a solar-type star.
There is growing observational and theoretical evidence suggesting that atmospheric escape is a key driver of planetary evolution. Commonly, planetary evolution models employ simple analytic formulae (e.g., energy limited escape) that are often inaccurate, and more detailed physical models of atmospheric loss usually only give snapshots of an atmosphere's structure and are difficult to use for evolutionary studies. To overcome this problem, we upgrade and employ an already existing upper atmosphere hydrodynamic code to produce a large grid of about 7000 models covering planets with masses 1 -39 M ⊕ with hydrogen-dominated atmospheres and orbiting late-type stars. The modelled planets have equilibrium temperatures ranging between 300 and 2000 K. For each considered stellar mass, we account for three different values of the high-energy stellar flux (i.e., low, moderate, and high activity). For each computed model, we derive the atmospheric temperature, number density, bulk velocity, X-ray and EUV (XUV) volume heating rates, and abundance of the considered species as a function of distance from the planetary center. From these quantities, we estimate the positions of the maximum dissociation and ionisation, the mass-loss rate, and the effective radius of the XUV absorption. We show that our results are in good agreement with previously published studies employing similar codes. We further present an interpolation routine capable to extract the modelling output parameters for any planet lying within the grid boundaries. We use the grid to identify the connection between the system parameters and the resulting atmospheric properties. We finally apply the grid and the interpolation routine to estimate atmospheric evolutionary tracks for the close-in, high-density planets CoRoT-7 b and HD219134 b,c. Assuming the planets ever accreted primary, hydrogen-dominated atmospheres, we find that the three planets must have lost them within a few Myr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.