[1] Dust samples were collected onboard the UK community BAe-146 research aircraft of the Facility for Airborne Atmospheric Measurements (FAAM) operated over Niger during the winter Special Observation Period of the African Monsoon Multidisciplinary Analysis project (AMMA SOP0/DABEX). Particle size, morphology, and composition were assessed using single-particle analysis by analytical scanning and transmission electron microscopy. The aerosol was found to be composed of externally mixed mineral dust and biomass burning particles. Mineral dust consists mainly of aluminosilicates in the form of illite and kaolinite and quartz, accounting for up to 80% of the aerosol number. Fe-rich particles (iron oxides) represented 4% of the particle number in the submicron fraction. Diatoms were found on all the samples, suggesting that emissions from the Bodélé depression were also contributing to the aerosol load. Satellite images confirm that the Bodélé source was active during the period of investigation. Biomass burning aerosols accounted for about 15% of the particle number of 0.1-0.6 mm diameter and were composed almost exclusively of particles containing potassium and sulfur. Soot particles were very rare. The aspect ratio AR is a measure of particle elongation. The upper limit of the AR value distribution is 5 and the median is 1.7, which suggests that mineral dust particles could be described as ellipsoids whose major axis never exceeds 1.9 Â D p (the spherical geometric diameter). This is consistent with other published values for mineral dust, including the recent Aerosol Robotic Network retrieval results of Dubovik et al. (2006).
Abstract. Mineral dust is an important component of the climate system, affecting the radiation balance, cloud properties, biogeochemical cycles, regional circulation and precipitation, as well as having negative effects on aviation, solar energy generation and human health. Dust size and composition has an impact on all these processes. However, changes in dust size distribution and composition during transport, particularly for coarse particles, are poorly understood and poorly represented in climate models. Here we present new in situ airborne observations of dust in the Saharan Air Layer (SAL) and the marine boundary layer (MBL) at the beginning of its transatlantic transport pathway, from the AERosol Properties – Dust (AER-D) fieldwork in August 2015, within the peak season of North African dust export. This study focuses on coarse-mode dust properties, including size distribution, mass loading, shape, composition, refractive indices and optical properties. Size distributions from 0.1 to 100 µm diameter (d) are presented, fully incorporating the coarse and giant modes of dust. Within the MBL, mean effective diameter (deff) and volume median diameter (VMD) were 4.6 and 6.0 µm respectively, giant particles with a mode at 20–30 µm were observed, and composition was dominated by quartz and alumino-silicates at d > 1 µm. Within the SAL, particles larger than 20 µm diameter were always present up to 5 km altitude, in concentrations over 10−5 cm−3, constituting up to 40 % of total dust mass. Mean deff and VMD were 4.0 and 5.5 µm respectively. Larger particles were detected in the SAL than can be explained by sedimentation theory alone. Coarse-mode composition was dominated by quartz and alumino-silicates; the accumulation mode showed a strong contribution from sulfate-rich and sea salt particles. In the SAL, measured single scattering albedos (SSAs) at 550 nm representing d < 2.5 µm were 0.93 to 0.98 (mean 0.97). Optical properties calculated for the full size distribution (0.1 < d < 100 µm) resulted in lower SSAs of 0.91–0.98 (mean 0.95) and mass extinction coefficients of 0.27–0.35 m2 g−1 (mean 0.32 m2 g−1). Variability in SSA was mainly controlled by variability in dust composition (principally iron) rather than by variations in the size distribution, in contrast with previous observations over the Sahara where size is the dominant influence. It is important that models are able to capture the variability and evolution of both dust composition and size distribution with transport in order to accurately represent the impacts of dust on climate. These results provide a new SAL dust dataset, fully representing coarse and giant particles, to aid model validation and development.
Regardless of origin, clays (illite, kaolinite) dominated the total volume (79-90%); the remainder was composed of quartz, calcium-rich minerals (calcite, dolomite, gypsum) and alkali feldspars. Iron oxides, measured using a selective chemical extraction method, accounted for 1-3% of the total dust mass. The dependence of particle number size and shape distribution on the origin of dust seems minor too, although our results might be slightly misleading due to the fact that those kinds of data have been gathered on flights when dust had comparable origins and residence time.Mineral dust is only weakly absorbing in the mid-visible wavelengths (single scattering albedo ω 0 > 0.95 at 550 nm), and ω 0 measured values can be reproduced by measuring the bulk fractions of the major minerals, i.e. clays, quartz, calcite and iron oxides. At this wavelength, knowledge of the nature of clays and iron oxides, or the state of mixing of the minerals, does not induce significant differences in the results. A more precise description of the nature of clays and iron oxides is necessary at lower wavelengths owing to larger differences in their spectral optical properties. In particular, knowledge of the nature of the dominant clay is important for determining light scattering in the backward hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.