Background-Mutations in the ␥ 2 subunit (PRKAG2) of AMP-activated protein kinase produce an unusual human cardiomyopathy characterized by ventricular hypertrophy and electrophysiological abnormalities: Wolff-ParkinsonWhite syndrome (WPW) and progressive degenerative conduction system disease. Pathological examinations of affected human hearts reveal vacuoles containing amylopectin, a glycogen-related substance. Methods and Results-To elucidate the mechanism by which PRKAG2 mutations produce hypertrophy with electrophysiological abnormalities, we constructed transgenic mice overexpressing the PRKAG2 cDNA with or without a missense N488I human mutation. Transgenic mutant mice showed elevated AMP-activated protein kinase activity, accumulated large amounts of cardiac glycogen (30-fold above normal), developed dramatic left ventricular hypertrophy, and exhibited ventricular preexcitation and sinus node dysfunction. Electrophysiological testing demonstrated alternative atrioventricular conduction pathways consistent with WPW. Cardiac histopathology revealed that the annulus fibrosis, which normally insulates the ventricles from inappropriate excitation by the atria, was disrupted by glycogen-filled myocytes. These anomalous microscopic atrioventricular connections, rather than morphologically distinct bypass tracts, appeared to provide the anatomic substrate for ventricular preexcitation. Conclusions-Our data establish PRKAG2 mutations as a glycogen storage cardiomyopathy, provide an anatomic explanation for electrophysiological findings, and implicate disruption of the annulus fibrosis by glycogen-engorged myocytes as the cause of preexcitation in Pompe, Danon, and other glycogen storage diseases.
Mutations in the lamin A/C (LMNA) gene, which encodes nuclear membrane proteins, cause a variety of human conditions including dilated cardiomyopathy (DCM) with associated cardiac conduction system disease. To investigate mechanisms responsible for electrophysiologic and myocardial phenotypes caused by dominant human LMNA mutations, we performed longitudinal evaluations in heterozygous Lmna +/-mice. Despite one normal allele, Lmna +/-mice had 50% of normal cardiac lamin A/C levels and developed cardiac abnormalities. Conduction system function was normal in neonatal Lmna +/-mice but by 4 weeks of age AV nodal myocytes had abnormally shaped nuclei and active apoptosis. Telemetric and in vivo electrophysiologic studies in 10 week-old Lmna +/-mice showed atrioventricular (AV) conduction defects and both atrial and ventricular arrhythmias, analogous to those observed in humans with heterozygous LMNA mutations. Isolated myocytes from 12-month old Lmna +/-mice exhibited impaired contractility. In vivo cardiac studies of aged Lmna +/-mice revealed DCM; in some mice this occurred without Contact address: Charles I. Berul, M.D., Department of Cardiology -Children's Hospital, 300 Longwood Ave., Boston, MA 02115 USA, Phone: 617 355-6432, Fax: 617 566-5671, charles.berul@cardio.chboston.org. * These authors contributed equally to this publication. Disclosures: NonePublisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public AccessAuthor Manuscript J Mol Cell Cardiol. Author manuscript; available in PMC 2010 December 29. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript overt conduction system disease. However, neither histopathology nor serum CK levels indicated skeletal muscle pathology. These data demonstrate cardiac pathology due to heterozygous Lmna mutations reflecting a 50% reduction in lamin protein levels. Lamin haploinsufficiency caused early-onset programmed cell death of AV nodal myocytes and progressive electrophysiologic disease. While lamin haploinsufficiency was better tolerated by non-conducting myocytes, ultimately these too succumbed to diminished lamin levels leading to dilated cardiomyopathy, which presumably arose independently from conduction system disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.