N-Hydroxypipecolic acid (NHP) accumulates in the plant foliage in response to a localized microbial attack and induces systemic acquired resistance (SAR) in distant leaf tissue. Previous studies indicated that pathogen inoculation of Arabidopsis (Arabidopsis thaliana) systemically activates SAR-related transcriptional reprogramming and a primed immune status in strict dependence of FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), which mediates the endogenous biosynthesis of NHP. Here, we show that elevations of NHP by exogenous treatment are sufficient to induce a SAR-reminiscent transcriptional response that mobilizes key components of immune surveillance and signal transduction. Exogenous NHP primes Arabidopsis wild-type and NHP-deficient fmo1 plants for a boosted induction of pathogen-triggered defenses, such as the biosynthesis of the stress hormone salicylic acid (SA), accumulation of the phytoalexin camalexin and branched-chain amino acids, as well as expression of defense-related genes. NHP also sensitizes the foliage systemically for enhanced SA-inducible gene expression. NHP-triggered SAR, transcriptional reprogramming and defense priming are fortified by SA accumulation and require the function of the transcriptional co-regulator NON-EXPRESSOR OF PR GENES1 (NPR1). Our results suggest that NPR1 transduces NHP-activated immune signaling modes with predominantly SA-dependent and minor SA-independent features. They further support the notion that NHP functions as a mobile immune regulator capable of moving independently of active SA signalling between leaves to systemically activate immune responses.
demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, i.e. histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3-ubiquitin ligases or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9-deficiency model, we demonstrate that CD24 fulfils a bivalent role in differentiation via regulation of homeobox, phospho-and glycoproteins, i.e. it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity towards cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.
Nine potential (fatty) alcohol dehydrogenase genes and one alcohol oxidase gene were identified in Yarrowia lipolytica by comparative sequence analysis. All relevant genes were deleted in Y. lipolytica H222ΔP which is lacking β-oxidation. Resulting transformants were tested for their ability to accumulate ω-hydroxy fatty acids and dicarboxylic acids in the culture medium. The deletion of eight alcohol dehydrogenase genes (FADH, ADH1-7), which may be involved in ω-oxidation, led only to a slightly increased accumulation of ω-hydroxy fatty acids, whereas the deletion of the fatty alcohol oxidase gene (FAO1), which has not been described yet in Y. lipolytica, exhibited a considerably higher effect. The combined deletion of the eight (fatty) alcohol dehydrogenase genes and the alcohol oxidase gene further reduced the formation of dicarboxylic acids. These results indicate that both (fatty) alcohol dehydrogenases and an alcohol oxidase are involved in ω-oxidation of long-chain fatty acids whereby latter plays the major role. This insight marks the first step toward the biotechnological production of long-chain ω-hydroxy fatty acids with the help of the nonconventional yeast Y. lipolytica. The overexpression of FAO1 can be further used to improve existing strains for the production of dicarboxylic acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.