A robust processing route at low cost is an essential requirement for high-temperature materials used in automotive engines. Because of their excellent high-temperature properties, their low density, high elastic modulus as well as high specific strength, intermetallic γ-TiAl based alloys are potential candidates for application in advanced automotive turbochargers. So-called 3rd generation alloys, such as TNM™ alloys with a nominal composition of Ti-43.5Al-4Nb-1Mo-0.1B (in at%), are multi-phase alloys consisting of γ-TiAl, α2-Ti3Al and a low volume fraction of βo-TiAl phase. In this paper a novel hot-processing route, which is a combination of a one-shot hot-forging step and a controlled cooling treatment, leads to mechanical properties required for turbocharger turbine wheels. The observed strength can be attributed to the small lamellar spacing within the α2/γ colonies of the nearly lamellar microstructure. In order to analyze the microstructure and the prevailing phase fractions microscopic examinations and X-ray diffraction measurements were conducted. The mechanical properties were determined by hardness measurements as well as tensile and creep tests. The evolution of the microstructure during the hot-forming process is described and its relation to the obtained mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.