We used representational difference analysis to identify homozygous genomic deletions selected during tumor progression in the mouse NF2 and TP53 tumor model. We describe a deletion targeting DOCK4, a member of the CDM gene family encoding regulators of small GTPases. DOCK4 specifically activates Rap GTPase, enhancing the formation of adherens junctions. DOCK4 mutations are present in a subset of human cancer cell lines; a recurrent missense mutant identified in human prostate and ovarian cancers encodes a protein that is defective in Rap1 activation. The engulfment defect of C. elegans mutants lacking the CDM gene ced-5 is rescued by wild-type DOCK4, but not by the mutant allele. Expression of wild-type, but not mutant, DOCK4 in mouse osteosarcoma cells with a deletion of the endogenous gene suppresses growth in soft agar and tumor invasion in vivo. DOCK4 therefore encodes a CDM family member that regulates intercellular junctions and is disrupted during tumorigenesis.
The active acquisition of epigenetic changes is a poorly understood but important process in development, differentiation, and disease. Our work has shown that repression of the p16/pRb pathway in human epithelial cells, a condition common to stem cells and many tumor cells, induces dynamic epigenetic remodeling resulting in the targeted methylation of a selected group of CpG islands. We hypothesized that cells in this epigenetically plastic state could be programmed by the microenvironment to acquire epigenetic changes associated with tumorigenesis. Here, we describe an in vitro model system where epigenetically plastic cells were placed in an environment that induced epithelial to mesenchymal transition (EMT) and led to a program of acquired de novo DNA methylation at targeted sites. In this model, we found that repression of E-cadherin transcription preceded the subsequent acquisition of methylated CpG sites. Furthermore, the induction of EMT was accompanied by de novo methylation of several other gene promoters, including those of the estrogen receptor and Twist. These data demonstrate that signals from the microenvironment can induce phenotypic and gene expression changes associated with targeted de novo epigenetic alterations important in tumor progression, and that these alterations occur through a deterministic, rather than stochastic, mechanism. Given the dynamic epigenetic reprogramming that occurs in these cells, DNA methylation profiles observed in human tumors may reflect the history of environmental exposures during the genesis of a tumor.epigenetic remodeling ͉ human mammary epithelial cells ͉ microenvironment ͉ ras T he heritable regulation of gene expression changes that are critical to processes such as differentiation and disease can be controlled by epigenetic modifications of proteins and DNA sequences. We recently reported that the repression of p16 INK4A in primary human mammary epithelial cells (HMEC) activates an E2F-mediated increase in proteins that remodel chromatin and causes targeted de novo DNA methylation at a non-random collection of loci (1). These studies show that cells can acquire epigenetic plasticity by altering the p16/pRb pathway, and that this program of acquired de novo methylation has a deterministic (predictable) rather than stochastic (random) pattern. Furthermore, the coordinated set of de novo DNA methylation events are preceded by, and dependent upon, the repression of gene expression. Thus, during cancer progression, one may envision that tumor cells can acquire epigenetic plasticity through repression of the p16/pRb pathway via mutations, deletions, or methylation (2), which then provides the potential for programming epigenetic events. These observations are reminiscent of studies that show the acquisition of promoter hypermethylation upon modulation of estrogen or retinoic acid signaling (3, 4). In these cell population-based studies it is unclear whether the nonrandom hypermethylation events observed are due to induction or selection. To explore this question...
The Salvador/Warts/Hippo (Hippo) signaling pathway defines a novel signaling cascade regulating cell contact inhibition, organ size control, cell growth, proliferation, apoptosis and cancer development in mammals. The upstream regulation of this pathway has been less well defined than the core kinase cassette. KIBRA has been shown to function as an upstream member of the Hippo pathway by influencing the phosphorylation of LATS and YAP, but functional consequences of these biochemical changes have not been previously addressed. We show that in MCF10A cells, loss of KIBRA expression displays epithelial-to-mesenchymal transition (EMT) features, which are concomitant with decreased LATS and YAP phosphorylation, but not MST1/2. In addition, ectopic KIBRA expression antagonizes YAP via the serine 127 phosphorylation site and we show that KIBRA, Willin and Merlin differentially regulate genes controlled by YAP. Finally, reduced KIBRA expression in primary breast cancer specimens correlates with the recently described claudin-low subtype, an aggressive sub-group with EMT features and a poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.