ObjectiveTo estimate the risk of acute myocardial infarction (AMI) or stroke in adults with non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH).DesignMatched cohort study.SettingPopulation based, electronic primary healthcare databases before 31 December 2015 from four European countries: Italy (n=1 542 672), Netherlands (n=2 225 925), Spain (n=5 488 397), and UK (n=12 695 046).Participants120 795 adults with a recorded diagnosis of NAFLD or NASH and no other liver diseases, matched at time of NAFLD diagnosis (index date) by age, sex, practice site, and visit, recorded at six months before or after the date of diagnosis, with up to 100 patients without NAFLD or NASH in the same database.Main outcome measuresPrimary outcome was incident fatal or non-fatal AMI and ischaemic or unspecified stroke. Hazard ratios were estimated using Cox models and pooled across databases by random effect meta-analyses.Results120 795 patients with recorded NAFLD or NASH diagnoses were identified with mean follow-up 2.1-5.5 years. After adjustment for age and smoking the pooled hazard ratio for AMI was 1.17 (95% confidence interval 1.05 to 1.30; 1035 events in participants with NAFLD or NASH, 67 823 in matched controls). In a group with more complete data on risk factors (86 098 NAFLD and 4 664 988 matched controls), the hazard ratio for AMI after adjustment for systolic blood pressure, type 2 diabetes, total cholesterol level, statin use, and hypertension was 1.01 (0.91 to 1.12; 747 events in participants with NAFLD or NASH, 37 462 in matched controls). After adjustment for age and smoking status the pooled hazard ratio for stroke was 1.18 (1.11 to 1.24; 2187 events in participants with NAFLD or NASH, 134 001 in matched controls). In the group with more complete data on risk factors, the hazard ratio for stroke was 1.04 (0.99 to 1.09; 1666 events in participants with NAFLD, 83 882 in matched controls) after further adjustment for type 2 diabetes, systolic blood pressure, total cholesterol level, statin use, and hypertension.ConclusionsThe diagnosis of NAFLD in current routine care of 17.7 million patient appears not to be associated with AMI or stroke risk after adjustment for established cardiovascular risk factors. Cardiovascular risk assessment in adults with a diagnosis of NAFLD is important but should be done in the same way as for the general population.
BackgroundNon-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide. It affects an estimated 20% of the general population, based on cohort studies of varying size and heterogeneous selection. However, the prevalence and incidence of recorded NAFLD diagnoses in unselected real-world health-care records is unknown. We harmonised health records from four major European territories and assessed age- and sex-specific point prevalence and incidence of NAFLD over the past decade.MethodsData were extracted from The Health Improvement Network (UK), Health Search Database (Italy), Information System for Research in Primary Care (Spain) and Integrated Primary Care Information (Netherlands). Each database uses a different coding system. Prevalence and incidence estimates were pooled across databases by random-effects meta-analysis after a log-transformation.ResultsData were available for 17,669,973 adults, of which 176,114 had a recorded diagnosis of NAFLD. Pooled prevalence trebled from 0.60% in 2007 (95% confidence interval: 0.41–0.79) to 1.85% (0.91–2.79) in 2014. Incidence doubled from 1.32 (0.83–1.82) to 2.35 (1.29–3.40) per 1000 person-years. The FIB-4 non-invasive estimate of liver fibrosis could be calculated in 40.6% of patients, of whom 29.6–35.7% had indeterminate or high-risk scores.ConclusionsIn the largest primary-care record study of its kind to date, rates of recorded NAFLD are much lower than expected suggesting under-diagnosis and under-recording. Despite this, we have identified rising incidence and prevalence of the diagnosis. Improved recognition of NAFLD may identify people who will benefit from risk factor modification or emerging therapies to prevent progression to cardiometabolic and hepatic complications.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1103-x) contains supplementary material, which is available to authorized users.
The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p ¼ 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the m-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the m-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2m conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.