Genetic and epigenetic alterations have been identified that lead to transcriptional deregulation in cancers. Genetic mechanisms may affect single genes or regions containing several neighboring genes, as has been shown for DNA copy number changes. It was recently reported that epigenetic suppression of gene expression can also extend to a whole region; this is known as long-range epigenetic silencing. Various techniques are available for identifying regional genetic alterations, but no large-scale analysis has yet been carried out to obtain an overview of regional epigenetic alterations. We carried out an exhaustive search for regions susceptible to such mechanisms using a combination of transcriptome correlation map analysis and array CGH data for a series of bladder carcinomas. We validated one candidate region experimentally, demonstrating histone methylation leading to the loss of expression of neighboring genes without DNA methylation.
Results: Maximum tolerated doses were 320 mg, 480 mg and 640 mg for continuous (n=47), 4/7 (n=21) and 2/7 (n=22) schedules, respectively. Dose-limiting toxicities were rash and diarrhea for continuous, hyperglycemia for 2/7, and none for 4/7. Common adverse events were diarrhea (78%) and nausea (49%) and, for CTCAE grade ≥3 events, hyperglycemia (20%). The recommended Phase 2 dose (480 mg bid, 4/7 intermittent) was assessed in PIK3CA-mutant breast and gynecologic expansion cohorts: 46% and 56% of patients, respectively, showed a reduction in tumor size, with RECIST responses of 4% and 8%. These responses were less than the pre-specified 20% response rate; therefore, the criteria to stop further recruitment to the PIK3CA cohort were met. Author Manuscript Published OnlineFirst on October 24, 2017; DOI: 10.1158/1078-0432.CCR-17-2260 6 Conclusions Statement of translational relevance (144/150 max)AZD5363 is a potent, selective inhibitor of AKT, a key node in the PI3K/AKT/mTOR pathway that is activated in a wide range of malignancies. In vivo, AZD5363 inhibited tumor growth in xenograft models. Preclinically, sensitivity to AZD5363 has been strongly related to the presence of PIK3CA mutations, which are relatively common in breast and gynecologic cancers. Our study, the first-in-human study of AZD5363, showed that at an identified recommended Phase 2 dose, AZD5363 was well tolerated and achieved plasma levels and robust target modulation in tumors. The study is also the first report of a biomarker-stratified cohort (PIK3CA mutations in breast and gynecologic cancers) of patients treated with an AKT inhibitor. Results suggest that future efforts in developing this class of drugs for the treatment of solid tumors, including PIK3CA-mutated breast and gynecologic cancers, will need to be in combination with other anticancer drugs.
Purpose: This dose-escalation study evaluated the safety, tolerability, and pharmacokinetics (PK) of the oral Src inhibitor saracatinib (AZD0530) in patients with advanced solid malignancies. Tumor biopsy samples were taken to investigate the effect of saracatinib on Src activity in tumors.Experimental Design: Part A of the study followed a multiple-ascending dose design to establish the maximum tolerated dose (MTD) of saracatinib. Part B was a randomized, parallel-group, cohort-expansion phase to further assess tolerated doses. Safety, tolerability, and Src activity (immunohistochemistry and lysate-based methodologies) were assessed after 21 days of once-daily oral dosing. PK was assessed after single and multiple dosing.Results: In part A, 30 patients received once-daily saracatinib at doses of 60 to 250 mg; the MTD was established as 175 mg. In part B, 51 patients were randomized to receive 50 mg (n = 16), 125 mg (n = 16), or 175 mg (n = 19) of saracatinib. The most common grade ≥3 events considered to be treatment related were anemia, diarrhea, and asthenia. Tumor Src activity was reduced following saracatinib treatment. The area under the concentration-time curve and C max of saracatinib increased with increasing dose. Saracatinib accumulated 4-to 5-fold on once-daily dosing to reach steady-state exposure after 10 to 17 days of dosing. The half-life was ∼40 hours.Conclusions: Saracatinib was well tolerated in patients with advanced solid malignancies. A reduction in tumor Src activity was observed. PK data show that saracatinib is suitable for once-daily oral dosing. Based on this study, the recommended dose for the phase II studies was chosen to be 175 mg/d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.