Overcoming the challenge of metal contamination in traditional ATRP systems, a metal-free ATRP process, mediated by light and catalyzed by an organic-based photoredox catalyst, is reported. Polymerization of vinyl monomers are efficiently activated and deactivated with light leading to excellent control over the molecular weight, polydispersity, and chain ends of the resulting polymers. Significantly, block copolymer formation was facile and could be combined with other controlled radical processes leading to structural and synthetic versatility. We believe that these new organic-based photoredox catalysts will enable new applications for controlled radical polymerizations and also be of further value in both small molecule and polymer chemistry.
ABSTRACT:The development of an operationally simple, metal-free surface-initiated atom transfer radical polymerization (SI-ATRP) based on visible-light mediation is reported. The facile nature of this process enables the fabrication of well-defined polymer brushes from flat and curved surfaces using a "benchtop" setup that can be easily scaled to four-inch wafers. This circumvents the requirement of stringent air-free environments (i.e., glovebox), and mediation by visible light allows for spatial control on the micron scale, with complex three-dimensional patterns achieved in a single step. This robust approach leads to unprecedented access to brush architectures for nonexperts.
A versatile strategy is reported for the multi-gram synthesis of discrete oligomers from commercially available monomer families, e.g., acrylates, styrenics, siloxanes. Central to this strategy is the identification of reproducible procedures for the separation of oligomer mixtures using automated flash chromatography systems with the effectiveness of this approach demonstrated through the multi-gram preparation of discrete oligomer libraries (Đ = 1.0). Synthetic availability, coupled with accurate structural control, allows these functional building blocks to be harnessed for both fundamental studies as well as targeted technological applications.
An efficient and scalable strategy to prepare libraries of discrete conjugated oligomers (Đ = 1.0) using the combination of controlled polymerization and automated flash chromatography is reported. From this two-step process, a series of discrete conjugated materials from dimers to tetradecamers could be isolated in high yield with excellent structural control. Facile and scalable access to monodisperse libraries of different conjugated oligomers opens pathways to designer mixtures with precise composition and monomer sequence, allowing exquisite control over their physical, optical, and electronic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.