The cover picture shows the electric eel, Electrophorus electricus, a source for commercially available acetylcholinesterase. In an experiment described by K. B. Sharpless and M. G. Finn and co‐workers on pp. 1053–1057, a femtomolar inhibitor was assembled by the enzyme from a collection of building blocks containing azide and alkyne functional groups, shown floating in solution. The templated 1,3‐dipolar cycloaddition reaction, producing the inhibitor, is represented by the flare of light at the center of the image.
Form‐fitting chemistry in a protein mold is enabled by the use of the 1,3‐dipolar cycloaddition of azides and alkynes. The enzyme acetylcholinesterase preferentially assembles one pair of these reactants, each of which bears a group that binds to adjacent positions on the protein structure (see picture), into a 1,2,3‐triazole adduct that is the most potent noncovalent inhibitor of the enzyme yet developed.
The X-ray crystal structures were solved for complexes with Torpedo californica acetylcholinesterase of two bivalent tacrine derivative compounds in which the two tacrine rings were separated by 5-and 7-carbon spacers. The derivative with the 7-carbon spacer spans the length of the active-site gorge, making sandwich interactions with aromatic residues both in the catalytic anionic site (Trp84 and Phe330) at the bottom of the gorge and at the peripheral anionic site near its mouth (Tyr70 and Trp279). The derivative with the 5-carbon spacer interacts in a similar manner at the bottom of the gorge, but the shorter tether precludes a sandwich interaction at the peripheral anionic site. Although the upper tacrine group does interact with Trp279, it displaces the phenyl residue of Phe331, thus causing a major rearrangement in the Trp279-Ser291 loop. The ability of this inhibitor to induce large-scale structural changes in the active-site gorge of acetylcholinesterase has significant implications for structure-based drug design because such conformational changes in the target enzyme are difficult to predict and to model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.