This study reports that recombinant adenovirus-mediated human bone morphogenetic protein-2 gene transfer can induce mesenchymal progenitor cell differentiation and bone formation. The recombinant adenovirus with the human bone morphogenetic protein-2 gene was constructed, and mature human bone morphogenetic protein-2 expression mediated by adenovirus gene transfer was detected by specific antibody. Under adenovirus-mediated bone morphogenetic-protein gene transfer, mesenchymal progenitor cell line C3H/10T 1/2 showed cell proliferation dependent on adenovirus bone morphogenetic-protein dose. The C3H/10T 1/2 cells transduced by adenovirus bone morphogenetic protein also exhibited differentiation to osteoblast phenotype, which indicates alkaline phosphatase activity. Injection of the C3H/10T 1/2 cells into the thigh muscles of nude mice led to ossicle development detectable on radiographs. Histological analysis indicated that the new ossicles that developed in the thigh muscles of the mice had different osseous components including bone trabeculae, bone marrow, and chondrified tissue. The results of this study demonstrate the potential for gene therapy by adenovirus-mediated bone morphogenetic-protein gene transfer.
Bone marrow derived mesenchymal stem cells (MSC) have been shown to be progenitor cells for mesenchymal tissues. These cells may also provide a potential therapy for bone repair. Our previous studies showed that MSC engineered with the gene for bone morphogenetic protein 2 (BMP-2), a growth factor for bone cells, were capable of differentiating into osteoblast lineage and inducing autologous bone formation in several animal models. Culturing individual MSC for autologous implantation, however, remains problematic. The number of human MSC with osteogenic potential decreases with age, and, in certain diseases, the patient's marrow may be damaged or the healthy cells reduced in number. In this study, we used rats with a femoral segmental defect to investigate whether allogeneic BMP-2 engineered MSC would facilitate bone healing. We show that BMP-2 engineered allogeneic MSC can repair critical bone defects to the same degree as rats treated with BMP-2 engineered autologous MSC, if the allogeneic group receives short-term treatment with immunosuppressant FK506. We also show that allogeneic gene transferred MSC are directly involved in bone repair, in addition to acting as gene deliverers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.