There is a lack of EB and MPI in the development of current breast apps. Safety concerns highlight the need for regulation, full authorship disclosure and clinical trials. A robust framework for identifying high quality applications is necessary. This will address the current barrier pertaining to a lack of consumer confidence in their use and further aid to promote their widespread implementation within healthcare.
Re-operation due to disease being inadvertently close to the resection margin is a major challenge in breast conserving surgery (BCS). Indocyanine green (ICG) fluorescence imaging could be used to visualize the tumor boundaries and help surgeons resect disease more efficiently. In this work, ICG fluorescence and color images were acquired with a custom-built camera system from 40 patients treated with BCS. Images were acquired from the tumor in-situ, surgical cavity post-excision, freshly excised tumor and histopathology tumour grossing. Fluorescence image intensity and texture were used as individual or combined predictors in both logistic regression (LR) and support vector machine models to predict the tumor extent. ICG fluorescence spectra in formalin-fixed histopathology grossing tumor were acquired and analyzed. Our results showed that ICG remains in the tissue after formalin fixation. Therefore, tissue imaging could be validated in freshly excised and in formalin-fixed grossing tumor. The trained LR model with combined fluorescence intensity (pixel values) and texture (slope of power spectral density curve) identified the tumor’s extent in the grossing images with pixel-level resolution and sensitivity, specificity of 0.75 ± 0.3, 0.89 ± 0.2.This model was applied on tumor in-situ and surgical cavity (post-excision) images to predict tumor presence.
A two-camera fluorescence system for indocyanine green (ICG) signal detection has been developed and tested in a clinical feasibility trial of ten patients, with a resolution in the submillimetre scale. Immediately after systemic ICG injection, the two-camera system can detect ICG signals in vivo (∼2.5 mg l − 1 or 3.2 × 10 − 6 M). Qualitative assessment has shown that the fluorescence signal does not always correlate with the cancer location in the surgical scene. Conversely, fluorescence image texture metrics when used with the logistic regression model yields good accuracy scores in detecting cancer. We have demonstrated that intraoperative fluorescence imaging for resection guidance is a feasible solution to tackle the current challenge of positive resection margins in breast conserving surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.