The irradiated, allogeneic, cellular CSF-470 vaccine plus Bacillus Calmette–Guerin (BCG) and recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) is being tested against medium-dose IFN-α2b in stages IIB–III cutaneous melanoma (CM) patients (pts) after surgery in an open, randomized, Phase II/III study. We present the results of the Phase II part of the ongoing CASVAC-0401 study (: NCT01729663). Thirty-one pts were randomized to the CSF-470 vaccine (n = 20) or to the IFN-α2b arm (n = 11). During the 2-year treatment, immunized pts should receive 13 vaccinations. On day 1 of each visit, 1.6 × 107 irradiated CSF-470 cells plus 106 colony-forming units BCG plus 100 µg rhGM-CSF were administered intradermally, followed on days 2–4 by 100 µg rhGM-CSF. IFN-α2b pts should receive 10 million units (MU)/day/5 days a week for 4 weeks; then 5 MU thrice weekly for 23 months. Toxicity and quality of life (QOL) were evaluated at each visit. With a mean and a maximum follow-up of 39.4 and 83 months, respectively, a significant benefit in the distant metastasis-free survival (DMFS) for CSF-470 was observed (p = 0.022). Immune monitoring showed an increase in antitumoral cellular and humoral response in vaccinated pts. CSF-470 was well tolerated; 20/20 pts presented grades 1–2 dermic reactions at the vaccination site; 3/20 pts presented grade 3 allergic reactions. Other adverse events (AEs) were grade 1. Pts in the IFN-α2b arm presented grades 2–3 hematological (7/11), hepatic (2/11), and cardiac (1/11) toxicity; AEs in 9/11 pts forced treatment interruptions. QOL was significantly superior in the vaccine arm (p < 0.0001). Our results suggest that CSF-470 vaccine plus BCG plus GM-CSF can significantly prolong, with lower toxicity, the DMFS of high-risk CM pts with respect to medium-dose IFN-α2b. The continuation of a Phase III part of the CASVAC-0401 study is encouraged.
The allogeneic therapeutic vaccine CSF-470 has demonstrated a significant benefit over medium-dose IFNα2b in the distant metastasis-free survival for stages IIB–IIC–III cutaneous melanoma patients in a randomized phase II/III clinical trial (CASVAC-0401, NCT01729663). At the end of the 2-year CSF-470 immunization protocol, patient #006 developed several lung and one subcutaneous melanoma metastases; this later was excised. In this report, we analyzed the changes throughout vaccination of immune populations in blood and in the tumor tissue, with special focus on the T-cell repertoire. Immunohistochemistry revealed a marked increase in CD8+, CD4+, and CD20+ lymphocytes infiltrating the metastasis relative to the primary tumor. Lymphocytes were firmly attached to dying-tumor cells containing Granzyme-B granules. Whole-exon sequencing assessment indicated a moderate-to-high tumor mutational burden, with BRAFV600E as the main oncogenic driver. Mutational signature presented large numbers of mutations at dipyrimidines, typical of melanoma. Relevant tumor and immune-related genes from the subcutaneous metastasis were addressed by RNA-Seq analysis, revealing expression of typical melanoma antigens and proliferative tumor-related genes. Stimulatory and inhibitory immune transcripts were detected as well as evidence of active T-cell effector function. Peripheral blood monitoring revealed an increase in CD4+ and CD8+ cells by the end of the immunization protocol. By CDR3-T-cell receptor β (TCRβ) sequencing, generation of new clones and an increase in oligoclonality was observed in the peripheral T-cells immune repertoire throughout immunization. A shift, with the expansion of selected preexisting and newly arising clones with reduction of others, was detected in blood. In tumor-infiltrating lymphocytes, prevalent clones (50%) were both new and preexisting that were expanded in blood following CSF-470 immunization. These clones persisted in time, since 2 years after completing the immunization, 51% of the clones present in the metastasis were still detected in blood. This is the first report of the modulation of the TCRβ repertoire from a melanoma patient immunized with the CSF-470 vaccine. After immunization, the changes observed in peripheral immune populations as well as in the tumor compartment suggest that the vaccine can induce an antitumor adaptive immune repertoire that can reach tumor lesions and persists in blood for at least 2 years.
As cutaneous melanoma (CM) currently remains with a bleak prognosis, thorough investigation of new treatment options are of utmost relevance. In the phase II/III randomized clinical trial (CASVAC-0401), the repeated immunization of stages IIB-III CM patients with the irradiated, allogeneic cellular CSF-470 vaccine plus the adjuvants bacillus Calmette-Guerin (BCG) and recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) demonstrated a significant benefit over IFN-alpha2B treatment in distant metastasis-free survival. Here we present on the short and long term immune monitoring results after completing the 2-year protocol; a continuation of the previous report by Mordoh et al. (1). We demonstrate that the repeated CSF-470 vaccinations stimulated a long term cellular and humoral immunity response directed against the vaccine antigens. In the case of 2 patients, we are able to show that a similar immune response was generated against autologous antigens. Evaluation of inhibitory receptor co-expression on patient's T cells indicates that the vaccination protocol did not stimulate T cell exhaustion. In order to better understand the basis for the efficacious vaccine responses observed, we investigated the short term immune events following vaccine injection. A significant increase in C-reactive protein (CRP) and IL-6 was observed 24 h after vaccination, with in vitro studies suggesting IL-6 production occurs in the vaccine site. We demonstrate that CRP enhances the cytotoxicity of peripheral blood mononuclear cells (PBMC) against melanoma cells in an in vitro model. Additionally, CRP stimulates the release of pro and anti-inflammatory cytokines from PBMC. As our results demonstrate that successive vaccinations with CSF-470 plus adjuvants promoted an increase in both anti-tumor innate and adaptive immunity, we propose a subsequent model of action.
The CSF-470 vaccine consists of lethally-irradiated allogeneic cells derived from four cutaneous melanoma cell lines administered plus BCG and GM-CSF as adjuvants. In an adjuvant phase II study vs. IFN-α2b, the vaccine significantly prolonged the distant metastasis-free survival (DMFS) of stages IIB-IIC-III melanoma patients with evidence of the induction of immune responses against vaccine cells. Purpose: The aim of this study was to analyze the antigens against which the immune response was induced, as well as the T-helper profile and lytic ability of immune cells after CSF-470 treatment. Methods: HLA-restricted peptides from tumor-associated antigens (TAAs) were selected from TANTIGEN database for 13 evaluable vaccinated patients. In addition, for patient #006 (pt#006), tumor somatic variants were identified by NGS and candidate neoAgs were selected by predicted HLA binding affinity and similarity between wild type (wt) and mutant peptides. The patient's PBMC reactivity against selected peptides was detected by IFNγ-ELISPOT. T-helper transcriptional profile was determined by quantifying GATA-3, T-bet, and FOXP3 mRNA by RT-PCR, and intracellular cytokines were analyzed by flow cytometry. Autologous tumor cell lysis by PBMC was assessed in an in vitro calcein release assay. Results: Vaccinated patient's PBMC reactivity against selected TAAs derived peptides showed a progressive increase in the number of IFNγ-producing cells throughout the 2-yr vaccination protocol. ELISPOT response correlated with delayed type hypersensitivity Podaza et al. T-Cell Response Induced by CSF-470 (DTH) reaction to CSF-470 vaccine cells. Early upregulation of GATA-3 and Foxp3 mRNA, as well as an increase in CD4+IL4+cells, was associated with a low DMFS. Also, IFNγ response against 9/73 predicted neoAgs was evidenced in the case of pt#006; 7/9 emerged after vaccination. We verified in pt# 006 that post-vaccination PBMC boosted in vitro with the vaccine lysate were able to lyse autologous tumor cells. Conclusions: A progressive increase in the immune response against TAAs expressed in the vaccine and in the patient's tumor was induced by CSF-470 vaccination. In pt#006, we demonstrated immune recognition of patient's specific neoAgs, which emerged after vaccination. These results suggest that an initial response against shared TAAs could further stimulate an immune response against autologous tumor neoAgs.
The CSF-470 cellular vaccine plus BCG and rhGM-CSF increased distant metastases-free survival in cutaneous melanoma patients stages IIB-IIC-III relative to medium dose IFN-α2b (CASVAC-0401 study). Patient-045 developed a mature vaccination site (VAC-SITE) and a regional cutaneous metastasis (C-MTS), which were excised during the protocol, remaining disease-free 36 months from vaccination start. CDR3-TCRβ repertoire sequencing in PBMC and tissue samples, along with skin-DTH score and IFN-γ ELISPOT assay, were performed to analyze the T-cell immune response dynamics throughout the immunization protocol. Histopathological analysis of the VAC-SITE revealed a highly-inflamed granulomatous structure encircled by CD11c+ nested-clusters, brisk CD8+ and scarce FOXP3+, lymphocytes with numerous Langhans multinucleated-giant-cells and macrophages. A large tumor-regression area fulfilled the C-MTS with brisk lymphocyte infiltration, mainly composed of CD8+PD1+ T-cells, CD20+ B-cells, and scarce FOXP3+ cells. Increasing DTH score and IFN-γ ELISPOT assay signal against the CSF-470 vaccine-lysate was evidenced throughout immunization. TCRβ repertoire analysis revealed for the first time the presence of common clonotypes between a VAC-SITE and a C-MTS; most of them persisted in blood by the end of the immunization protocol. In vitro boost with vaccine-lysate revealed the expansion of persistent clones that infiltrated the VAC-SITE and/or the C-MTS; other persistent clones expanded in the patient's blood as well. We propose that expansion of such persistent clonotypes might derive from two different although complementary mechanisms: the proliferation of specific clones as well as the expansion of redundant clones, which increased the number of nucleotide rearrangements per clonotype, suggesting a functional antigenic selection. In this patient, immunization with the CSF-470 vaccine plus BCG and rhGM-CSF induced a T-cell repertoire at the VAC-SITE that was able to infiltrate an emerging C-MTS, which resulted in the expansion of a T-cell repertoire that persisted in blood by the end of the 2-year treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.