Background: The BRCA1-associated protein-1 (BAP1) tumor predisposition syndrome (BAP1-TPDS) is a hereditary tumor syndrome caused by germline pathogenic variants in BAP1 encoding a tumor suppressor associated with uveal melanoma, mesothelioma, cutaneous melanoma, renal cell carcinoma, and cutaneous BAP1-inactivated melanocytic tumors. However, the full spectrum of tumors associated with the syndrome is yet to be determined. Improved understanding of the BAP1-TPDS is crucial for appropriate clinical management of BAP1 germline variant carriers and their families, including genetic counseling and surveillance for new tumors. Methods: We collated germline variant status, tumor diagnoses, and information on BAP1 immunohistochemistry or loss of somatic heterozygosity on 106 published and 75 unpublished BAP1 germline variant-positive families worldwide to better characterize the genotypes and phenotypes associated with the BAP1-TPDS. Tumor spectrum and ages of onset were compared between missense and null variants. All statistical tests were two-sided. Results: The 181 families carried 140 unique BAP1 germline variants. The collated data confirmed the core tumor spectrum associated with the BAP1-TPDS and showed that some families carrying missense variants can exhibit this phenotype. A variety of noncore BAP1-TPDS -associated tumors were found in families of variant carriers. Median ages of onset of core tumor types were lower in null than missense variant carriers for all tumors combined (P < .001), mesothelioma (P < .001), cutaneous melanoma (P < .001), and nonmelanoma skin cancer (P < .001).
A mutation update on the nebulin gene (NEB) is necessary because of recent developments in analysis methodology, the identification of increasing numbers and novel types of variants, and a widening in the spectrum of clinical and histological phenotypes associated with this gigantic, 183 exons containing gene. Recessive pathogenic variants in NEB are the major cause of nemaline myopathy (NM), one of the most common congenital myopathies. Moreover, pathogenic NEB variants have been identified in core-rod myopathy and in distal myopathies. In this update, we present the disease-causing variants in NEB in 159 families, 143 families with NM, and 16 families with NM-related myopathies. Eighty-eight families are presented here for the first time. We summarize 86 previously published and 126 unpublished variants identified in NEB. Furthermore, we have analyzed the NEB variants deposited in the Exome Variant Server (http://evs.gs.washington.edu/EVS/), identifying that pathogenic variants are a minor fraction of all coding variants (~7%). This indicates that nebulin tolerates substantial changes in its amino acid sequence, providing an explanation as to why variants in such a large gene result in relatively rare disorders. Lastly, we discuss the difficulties of drawing reliable genotype–phenotype correlations in NEB-associated disease.
Initial triggers for diabetic retinopathy (DR) are hyperglycemia-induced oxidative stress and advanced glycation end-products. The most pathological structural changes occur in retinal microvasculature, but the overall development of DR is multifactorial, with a complex interplay of microvascular, neurodegenerative, genetic/epigenetic, immunological, and secondary inflammation-related factors. Although several individual factors and pathways have been associated with retinopathy, a systems level understanding of the disease is lacking. To address this, we performed mass spectrometry based label-free quantitative proteomics analysis of 138 vitreous humor samples from patients with nonproliferative DR or the more severe proliferative form of the disease. Additionally, we analyzed samples from anti-VEGF (vascular endothelial growth factor) (bevacizumab)-treated patients from both groups. In our study, we identified 2482 and quantified the abundancy of 1351 vitreous proteins. Of these, the abundancy of 230 proteins was significantly higher in proliferative retinopathy compared with nonproliferative retinopathy. This specific subset of proteins was linked to inflammation, complement, and coagulation cascade proteins, protease inhibitors, apolipoproteins, immunoglobulins, and cellular adhesion molecules, reflecting the multifactorial nature of the disease. The identification of the key molecules of the disease is critical for the development of new therapeutic molecules and for the new use of existing drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.