As the COVID-19 pandemic has largely increased the utilization of telehealth, mobile mental health technologies -such as smartphone apps, virtual reality, chatbots, and social media -have also gained attention. These digital health technologies offer the potential of accessible and scalable interventions that can augment traditional care. In this paper, we provide a comprehensive update on the overall field of digital psychiatry, covering three areas. First, we outline the relevance of recent technological advances to mental health research and care, by detailing how smartphones, social media, artificial intelligence and virtual reality present new opportunities for "digital phenotyping" and remote intervention. Second, we review the current evidence for the use of these new technological approaches across different mental health contexts, covering their emerging efficacy in self-management of psychological well-being and early intervention, along with more nascent research supporting their use in clinical management of long-term psychiatric conditions -including major depression; anxiety, bipolar and psychotic disorders; and eating and substance use disorders -as well as in child and adolescent mental health care. Third, we discuss the most pressing challenges and opportunities towards real-world implementation, using the Integrated Promoting Action on Research Implementation in Health Services (i-PARIHS) framework to explain how the innovations themselves, the recipients of these innovations, and the context surrounding innovations all must be considered to facilitate their adoption and use in mental health care systems. We conclude that the new technological capabilities of smartphones, artificial intelligence, social media and virtual reality are already changing mental health care in unforeseen and exciting ways, each accompanied by an early but promising evidence base. We point out that further efforts towards strengthening implementation are needed, and detail the key issues at the patient, provider and policy levels which must now be addressed for digital health technologies to truly improve mental health research and treatment in the future.
The radiation belts and plasma in the Earth's magnetosphere pose hazards to satellite systems which restrict design and orbit options with a resultant impact on mission performance and cost. For decades the standard space environment specification used for spacecraft design has been provided by the NASA AE8 and AP8 trapped radiation belt models. There are well-known limitations on their performance, however, and the need for a new trapped radiation and plasma model has been recognized by the engineering community for some time. To address this challenge a new set of models, denoted AE9/AP9/SPM, for energetic electrons, energetic protons and space plasma has been developed. The new models offer significant improvements including more detailed spatial resolution and the quantification of uncertainty due to both space weather and instrument errors. Fundamental to the model design, construction and operation are a number of new data sets and a novel statistical approach which captures first order temporal and spatial correlations allowing for the Monte-Carlo estimation of flux thresholds for user-specified percentile levels (e.g., 50th and 95th) over the course of the mission. An overview of the model architecture, data reduction methods, statistics algorithms, user application and initial validation is presented in this paper.
The radiation belts and plasma in the Earth's magnetosphere pose hazards to satellite systems which restrict design and orbit options with a resultant impact on mission performance and cost. For decades the standard space environment specification used for spacecraft design has been provided by the NASA AE8 and AP8 trapped radiation belt models. There are well-known limitations on their performance, however, and the need for a new trapped radiation and plasma model has been recognized by the engineering community for some time. To address this challenge a new set of models, denoted AE9/AP9/SPM, for energetic electrons, energetic protons and space plasma has been developed. The new models offer significant improvements including more detailed spatial resolution and the quantification of uncertainty due to both space weather and instrument errors. Fundamental to the model design, construction and operation are a number of new data sets and a novel statistical approach which captures first order temporal and spatial correlations allowing for the Monte-Carlo estimation of flux thresholds for user-specified percentile levels (e.g., 50th and 95th) over the course of the mission. An overview of the model architecture, data reduction methods, statistics algorithms, user application and initial validation is presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.