BackgroundPyruvate kinase deficiency is a hereditary disease that affects the glycolytic pathway of the red blood cell, causing nonspherocytic hemolytic anemia. The disease is transmitted as an autosomal recessive trait and shows a marked variability in clinical expression. This study reports on the molecular characterization of ten Brazilian pyruvate kinase-deficient patients and the genotype–phenotype correlations.MethodSanger sequencing and in silico analysis were carried out to identify and characterize the genetic mutations. A non-affected group of Brazilian individuals were also screened for the most commonly reported variants (c.1456C>T and c.1529G>A).ResultsTen different variants were identified in the PKLR gene, of which three are reported here for the first time: p.Leu61Gln, p.Ala137Val and p.Ala428Thr. All the three missense variants involve conserved amino acids, providing a rationale for the observed enzyme deficiency. The allelic frequency of c.1456C>T was 0.1% and the 1529G>A variant was not found.ConclusionThis is the first comprehensive report on molecular characterization of pyruvate kinase deficiency from South America. The results allowed us to correlate the severity of the clinical phenotype with the identified variants.
Hb S-São Paulo (SP) [HBB:c.20A>T p.Glu6Val; c.196A>G p.Lys65Glu] is a new double-mutant hemoglobin that was found in heterozygosis in an 18-month-old Brazilian male with moderate anemia. It behaves like Hb S in acid electrophoresis, isoelectric focusing and solubility testing but shows different behavior in alkaline electrophoresis, cation-exchange HPLC and RP-HPLC. The variant is slightly unstable, showed reduced oxygen affinity and also appeared to form polymers more stable than the Hb S. Molecular dynamics simulation suggests that the polymerization is favored by interfacial electrostatic interactions. This provides a plausible explanation for some of the reported experimental observations.
Cytogenetics is essential in myeloid neoplasms (MN) and pre-analytical variables are important for karyotyping. We assessed the relationship between pre-analytical variables (time from collection to sample processing, material type, sample cellularity, and diagnosis) and failures of karyotyping. Bone marrow (BM, n=352) and peripheral blood (PB, n=69) samples were analyzed from acute myeloid leukemia (n=113), myelodysplastic syndromes (n=73), myelodysplastic syndromes/myeloproliferative neoplasms (n=17), myeloproliferative neoplasms (n=137), and other with conclusive diagnosis (n=6), and reactive disorders/no conclusive diagnosis (n=75). The rate of unsuccessful karyotyping was 18.5% and was associated with the use of PB and a low number of nucleated cells (≤7×10
3
/µL) in the sample. High and low cellularity in BM and high and low cellularity in PB samples showed no metaphases in 3.9, 39.7, 41.9, and 84.6% of cases, respectively. Collecting a good BM sample is the key for the success of karyotyping in MN and avoids the use of expensive molecular techniques.
To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.