Supposed or potential Devonian igneous rocks in the accretionary complex of southern Chile were investigated using sensitive high-resolution ion microprobe U-Pb dating of zircon, with Hf- and O-isotope analyses of selected grains. Ages of 384 +/- 3 and 382 +/- 2 Ma are confirmed for two igneous bodies (another having been previously dated at 397 +/- 1 Ma). Detrital zircon ages in the host rocks, some associated with Devonian marine fossils, indicate maximum possible sedimentation ages of c. 330 - 385 Ma. Devonian ages of 391 +/- 10 and 374 +/- 3 Ma for plutonic rocks at the western edge of the North Patagonian Massif are somewhat older than those of orthogneisses in the western flank of the Andes near Chaiten (361 +/- 7 and 364 +/- 2 Ma). O and Hf isotopes indicate that the Devonian intrusions in the accretionary complex crystallized from mantle-derived magmas, whereas those in the North Patagonian Massif show a strong crustal influence, corresponding to oceanic and continental margin subduction environments of magma genesis, respectively. Devonian zircon provenance in the accretionary complex was from the North Patagonian Massif and not from the mantle-derived intrusions, suggesting that the accretionary complex formed an integral part of the Gondwana margin during Devonian-Carboniferous timesProject Fondecyt 113022
Previous work has shown that Devonian magmatism in the southern Andes occurred in two contemporaneous belts: one emplaced in the continental crust of the North Patagonian Massif and the other in an oceanic island arc terrane to the west, Chaitenia, which was later accreted to Patagonia. The country rocks of the plutonic rocks consist of metasedimentary complexes which crop out sporadically in the Andes on both sides of the Argentina-Chile border, and additionally of pillow metabasalts for Chaitenia. Detrital zircon SHRIMP U-Pb age determinations in 13 samples of these rocks indicate maximum possible depositional ages from ca. 370 to 900 Ma, and the case is argued for mostly Devonian sedimentation as for the fossiliferous Buill slates. Ordovician, Cambrian-late Neoproterozoic and “Grenville-age” provenance is seen throughout, except for the most westerly outcrops where Devonian detrital zircons predominate. Besides a difference in the Precambrian zircon grains, 76% versus 25% respectively, there is no systematic variation in provenance from the Patagonian foreland to Chaitenia, so that the island arc terrane must have been proximal to the continent: its deeper crust is not exposed but several outcrops of ultramafic rocks are known. Zircons with devonian metamorphic rims in rocks from the North Patagonian Massif have no counterpart in the low metamorphic grade Chilean rocks. These Paleozoic metasedimentary rocks were also intruded by Pennsylvanian and Jurassic granitoids.
This study synthesizes the tectonomagmatic evolution of the Andes between 35°30'S to 48°S with the aim to spotlight early contractional phases on Andean orogenic building and to analyze their potential driving processes. We examine early tectonic stages of the different fold-thrust belts that compose this Andean segment. Additionally, we analyzed the spatiotemporal magmatic arc evolution as a proxy of dynamic changes in Andean subduction during critical tectonic stages of orogenic construction. This revision proposes a hypothesis related the existence of a continuous large-scale flat subduction setting in Cretaceous times with a similar size to the present-largest flat-slab setting on earth. This potential process would have initiated diachronically in the late Early Cretaceous and achieved full development in Late Cretaceous to earliest Paleocene times, constructing a series of fold-thrust belts on the retroarc zone from 35°30'S to 48°S. Moreover, we assess major paleogeographic changes that took place during flat-slab full development in Maastrichtian-Danian times. At this moment, an enigmatic Atlantic-derived marine flooding covered the Patagonian foreland reaching as far as the Andean foothills. Based on flexural and dynamic topography analyses, we suggest that focused dynamic subsidence at the edge of the flat-slab may explain sudden marine ingression previously linked to continental tilting and orogenic loading during a high sea level global stage. Finally, flat-subduction destabilization could have triggered massive outpouring of synextensional intraplate volcanic rocks in southern South America and the arc retraction in late Paleogene to early Neogene times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.