In this study, we investigated whether CD4+CD25high regulatory T cells (Treg) are increased in the tumor tissue and peripheral blood of early-stage prostate cancer patients undergoing prostatectomy. We show that the prevalence of CD4+CD25high T cells inside the prostate was significantly higher in the tumor compared with benign tissue from the same prostate. Furthermore, the frequency of CD4+CD25high T cells in peripheral blood was significantly higher in prostate cancer patients compared with normal donors. A proportion of the CD4+CD25high T cells was also shown to be glucocorticoid-induced TNF receptor, ICOS, and FOXP3 positive. Moreover, CD4+CD25+ T cells from blood and supernatants from cultured prostate tumor tissue samples exhibited immunosuppressive function in vitro. Furthermore, supernatants from cultured prostate tissue samples and prostate cancer ascites fluid induced migration of CD4+CD25+ T cells and were shown to contain the regulatory T cell chemokine CCL22 by ELISA. Our findings indicate that Tregs are an important cellular component of early-stage prostate tumors, and thus new therapeutic strategies aimed at inhibition or depletion of Tregs may improve prostate cancer immunotherapy.
It is now widely accepted that the detection of minimal residual disease (MRD) has prognostic value in acute leukemia. However clinical MRD studies need standardized techniques. Therefore, several European laboratories have aligned their goals and performed comparative studies to achieve optimization and standardization of MRD techniques. This was achieved via the BIOMED-1 Concerted Action "Investigation of minimal residual disease in acute leukemia: International standardization and clinical evaluation." This report describes the development of PCR primers and protocols for the detection of MRD in acute lymphoblastic leukemia (ALL) using clone-specific junctional regions of immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. A total of 54 primers was developed (1) to amplify rearrangements of the TCRD, TCRG, and IGK (Kde) genes as well as TAL1 deletions; (2) to sequence the junctional regions and breakpoint fusion regions; and (3) to perform MRD detection in bone marrow or peripheral blood samples during follow-up of ALL patients. Protocols were established to identify PCR targets at diagnosis by performing 25 PCR reactions per patient using appropriate positive and negative controls. Standardized protocols were developed for MRD monitoring via single amplification of the PCR target followed by dot blot hybridization with the corresponding patient-specific junctional region probe. In addition, alternative approaches were designed for cases where the target sensitivity of at least 10 −4 was not obtained. The standardization described here of MRD-PCR techniques is essential for the process of translating MRD research into clinical practice.
Dysfunctional T cells present in malignant lesions are characterized by a sustained and highly diverse expression of inhibitory receptors, also referred to as immune checkpoints. Yet, their relative functional significance in different cancer types remains incompletely understood. In this study, we provide a comprehensive characterization of the diversity and expression patterns of inhibitory receptors on tumor-infiltrating T cells from patients with non-small cell lung cancer. In spite of the large heterogeneity observed in the amount of PD-1, Tim-3, CTLA-4, LAG-3, and BTLA expressed on intratumoral CD8 þ T cells from 32 patients, a clear correlation was established between increased expression of these inhibitory coreceptors and progression of the disease. Notably, the latter was accompanied by a progressively impaired capacity of T cells to respond to polyclonal activation. Coexpression of several inhibitory receptors was gradually acquired, with early PD-1 and late LAG-3/BTLA expression. PD-1 blockade was able to restore Tcell function only in a subset of patients. A high percentage of PD-1 hi T cells was correlated with poor restoration of T-cell function upon PD-1 blockade. Of note, PD-1 hi expression marked a particularly dysfunctional T-cell subset characterized by coexpression of multiple inhibitory receptors and thus may assist in identifying patients likely to respond to inhibitory receptorspecific antibodies. Overall, these data may provide a framework for future personalized T-cell-based therapies aiming at restoration of tumor-infiltrating lymphocyte effector functions.
The p53 tumor suppressor protein inhibits the formation of tumors through induction of cell cycle arrest and/or apoptosis. In the present study we demonstrated that p53 is also a powerful inhibitor of human telomerase reverse transcriptase (hTERT), a key component for telomerase. Activation of either exogenous temperature-sensitive (ts) p53 in BL41 Burkitt lymphoma cells or endogenous wild type (wt) p53 at a physiological level in MCF-7 breast carcinoma cells triggered a rapid downregulation of hTERT mRNA expression, independently of the induction of the p53 target gene p21. Co-transfection of an hTERT promoter construct with wt p53 but not mutant p53 in HeLa cells inhibited the hTERT promoter activity. Furthermore, the activation of the hTERT promoter in Drosophila Schneider SL2 cells was completely dependent on the ectopic expression of Sp1 and was abrogated by wt p53. Finally, wt p53 inhibited Sp1 binding to the hTERT proximal promoter by forming a p53-Sp1 complex. Since activation of telomerase, widely observed in human tumor cell lines and primary tumors, is a critical step in tumorigenesis, wt p53-triggered inhibition of hTERT/telomerase expression may re¯ect yet another mechanism of p53-mediated tumor suppression. Our ®ndings provide new insights into both the biological function of p53 and the regulation of hTERT/telomerase expression. Oncogene (2000) 19, 5123 ± 5133.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.