In this work a multi-technique characterization was performed for the first time to trace the influence of structural defects on the physical properties of PbTiO 3 ferroelectrics. The structural defects were generated by the mechanical activation in the pressure range of 40-320 MPa, by combining a uniaxial strain with a shear deformation in the Bridgman anvils. The induced defectivity of PbTiO 3 was assessed via calculation of unit cell parameters, estimation of the regions of coherent scattering and analysis of micro-deformations. The Debye characteristic temperature, the static mean-square displacement, the Debye-Waller isotropic factor, the vibrational spectra and dielectric properties of the activated PbTiO 3 ceramics are presented. The high-quality PbTiO 3 ceramics was prepared without modifiers, hence, changing the concentration of structural defects via mechanical activation constitutes a chemically clean method for fine tuning of the dielectric properties of PbTiO 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.