The responses of Populus euphratica Oliv. plants to soil water deficit were assessed by analyzing gene expression, protein profiles, and several plant performance criteria to understand the acclimation of plants to soil water deficit. Young, vegetatively propagated plants originating from an arid, saline field site were submitted to a gradually increasing water deficit for 4 weeks in a greenhouse and were allowed to recover for 10 d after full reirrigation. Time-dependent changes and intensity of the perturbations induced in shoot and root growth, xylem anatomy, gas exchange, and water status were recorded. The expression profiles of approximately 6,340 genes and of proteins and metabolites (pigments, soluble carbohydrates, and oxidative compounds) were also recorded in mature leaves and in roots (gene expression only) at four stress levels and after recovery. Drought successively induced shoot growth cessation, stomatal closure, moderate increases in oxidative stressrelated compounds, loss of CO 2 assimilation, and root growth reduction. These effects were almost fully reversible, indicating that acclimation was dominant over injury. The physiological responses were paralleled by fully reversible transcriptional changes, including only 1.5% of the genes on the array. Protein profiles displayed greater changes than transcript levels. Among the identified proteins for which expressed sequence tags were present on the array, no correlation was found between transcript and protein abundance. Acclimation to water deficit involves the regulation of different networks of genes in roots and shoots. Such diverse requirements for protecting and maintaining the function of different plant organs may render plant engineering or breeding toward improved drought tolerance more complex than previously anticipated.
To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.
In this study the impact of salt stress on the physiology and wood structure of the salt-sensitive Populus x canescens was investigated. Two weeks of salt stress altered wood anatomy significantly. The xylem differentiation zone was reduced and the resulting vessels exhibited reduced lumina. To understand this phenomenon, ion composition, levels of corresponding transcripts and of the stress hormone ABA were analysed. With increasing sodium and chloride concentrations, a general reduction of potassium was found in roots and shoots, but not in leaves. Consequently, the corresponding K+ channel transcripts in roots favoured K+ release. The overall osmolarity in leaves was up to fourfold higher than in roots or shoots. Therefore, adjustment of the K+/Na+ balance seemed not to be required in leaves. Sodium increased gradually from roots to shoots and then to leaves indicating that sodium storage took place first in roots, then in shoots, and finally in leaves to protect photosynthesis from salt effects as long as possible. Since leaf abscisic acid levels markedly increased, stomatal closure seemed to limit CO2 uptake. As a consequence, diminished nutrient supply to the cambium in combination with lowered shoot K+ content led to decreased vessel lumina, and a reduction of the radial cambium was observed. Thus, xylem differentiation was curtailed and the development of full size vessels was impaired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.