COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.
Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8 + T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8 + T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.
The development of
a safe and effective SARS-CoV-2 vaccine is a
public health priority. We designed subunit vaccine candidates using
self-assembling ferritin nanoparticles displaying one of two multimerized
SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal
70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive
nanoparticle platform for production of vaccines, and ferritin-based
vaccines have been investigated in humans in two separate clinical
trials. We confirmed proper folding and antigenicity of spike on the
surface of ferritin by cryo-EM and binding to conformation-specific
monoclonal antibodies. After a single immunization of mice with either
of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus
assay revealed mean neutralizing antibody titers at least 2-fold greater
than those in convalescent plasma from COVID-19 patients. Additionally,
a single dose of SΔC-Fer elicited significantly higher neutralizing
responses as compared to immunization with the spike receptor binding
domain (RBD) monomer or spike ectodomain trimer alone. After a second
dose, mice immunized with SΔC-Fer exhibited higher neutralizing
titers than all other groups. Taken together, these results demonstrate
that multivalent presentation of SARS-CoV-2 spike on ferritin can
notably enhance elicitation of neutralizing antibodies, thus constituting
a viable strategy for single-dose vaccination against COVID-19.
5-Methylcytosine (5mC) in DNA can be oxidized stepwise to 5-hydroxymethylcytosine (5hmC), 5- formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the TET family proteins. Thymine DNA glycosylase can further remove 5fC and 5caC, connecting 5mC oxidation with active DNA demethylation. Here we present a chemical modification-assisted bisulfite sequencing (CAB-Seq) that can detect 5caC with single-base resolution in DNA. We optimized 1-ethyl-3- [3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)- catalyzed amide bond formation between the carboxyl group of 5caC and a primary amine group. We found that the modified 5caC can survive the bisulfite treatment without deamination. Therefore, this chemical labeling coupled with bisulfite treatment provides a base-resolution detection and sequencing method for 5caC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.