The explosive molecular outflow detected decades ago in the Orion BN/KL region of massive star formation was considered to be a bizarre event. This belief was strengthened by the non detection of similar cases over the years with the only exception of the marginal case of DR21. Here, we confim a similar explosive outflow associated with the UCH II region G5.89−0.39 that indicates that this phenomenon is not unique to Orion or DR21. Sensitive and high angular resolution (∼ 0.1) ALMA CO(2−1) and SiO(5−4) observations show that the molecular outflow in the massive star forming region G5.89−0.39 is indeed an explosive outflow with an age of about 1000 yrs and a liberated kinetic energy of 10 46−49 erg. Our new CO(2−1) ALMA observations revealed over 30 molecular filaments, with Hubble-like expansion motions, pointing to the center of UCH II region. In addition, the SiO(5−4) observations reveal warmer and strong shocks very close to the origin of the explosion, confirming the true nature of the flow. A simple estimation for the occurrence of these explosive events during the formation of the massive stars indicates an event rate of once every ∼100 yrs, which is close to the supernovae rate.
There is evidence that the star formation process is linked to the intricate net of filaments in molecular clouds, which may be also due to gas compression from external triggers. We studied the southern region of the Perseus NGC 1333 molecular cloud, known to be heavily shaped by similar external triggers, to shed light on the process that perturbed the filament where the Class 0 IRAS4 protostars lie. We use new IRAM-NOEMA observations of SiO and CH3OH, both known to trace violent events as shocks, toward IRAS 4A as part of the Large Program Seeds Of Life in Space (SOLIS). We detected three parallel elongated (>6000 au) structures, called fingers, with narrow line profiles (∼1.5 km s−1) peaked at the cloud systemic velocity, tracing gas with high density (5–20× 105 cm−3) and high temperature (80–160 K). They are chemically different, with the northern finger traced by both SiO and CH3OH ([CH3OH]/[SiO]∼160–300), while the other two only by SiO ([CH3OH]/[SiO]≤40). Among various possibilities, a train of three shocks, distanced by ≥5000 yr, would be consistent with the observations if a substantial fraction of silicon, frozen on to the grain mantles, is released by the shocks. We suggest that the shock train is due to an expanding gas bubble, coming behind NGC 1333 from the southwest and clashing against the filament, where IRAS 4A lies. Finally, we propose a solution to the two-decades long debate on the nature and origin of the widespread narrow SiO emission observed in the south part of NGC 1333, namely that it is due to unresolved trains of shocks.
We present two axisymmetric simulations of a high velocity clump in a photoionized region: one for the case of a uniform, low density environment and a second one for the case of a clump first traveling within a high density medium and then emerging into a low density environment. We show that the second scenario results in the production of an axial tail of dense material with a linear velocity vs. position ramp (with zero velocity at the high/low density environment transition). This material comes from a confined bow shock (produced by the clump when it was within the dense cloud) that emerges into the low environmental density region.
HCN and its isomer HNC play an important role in molecular cloud chemistry and the formation of more complex molecules. We investigate here the impact of protostellar shocks on the HCN and HNC abundances from high-sensitivity IRAM 30m observations of the prototypical shock region L1157-B1 and the envelope of the associated Class 0 protostar, as a proxy for the pre-shock gas. The isotopologues H12CN, HN12C, H13CN, HN13C, HC15N, H15NC, DCN and DNC were all detected towards both regions. Abundances and excitation conditions were obtained from radiative transfer analysis of molecular line emission under the assumption of Local Thermodynamical Equilibrium. In the pre-shock gas, the abundances of the HCN and HNC isotopologues are similar to those encountered in dark clouds, with a HCN/HNC abundance ratio ≈1 for all isotopologues. A strong D-enrichment (D/H≈0.06) is measured in the pre-shock gas. There is no evidence of 15N fractionation neither in the quiescent nor in the shocked gas. At the passage of the shock, the HCN and HNC abundances increase in the gas phase in different manners so that the HCN/HNC relative abundance ratio increases by a factor 20. The gas-grain chemical and shock model UCLCHEM allows us to reproduce the observed trends for a C-type shock with pre-shock density n(H)= $10^5\,{\rm cm^{-3}}$ and shock velocity $V_s = 40\,{\rm km\,s^{-1}}$. We conclude that the HCN/HNC variations across the shock are mainly caused by the sputtering of the grain mantle material in relation with the history of the grain ices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.