The heterogeneity and instability of human tumors hamper straightforward identification of cancer-causing mutations through genomic approaches alone. Herein we describe a mouse model of liver cancer initiated from progenitor cells harboring defined cancer-predisposing lesions. Genome-wide analyses of tumors in this mouse model and in human hepatocellular carcinomas revealed a recurrent amplification at mouse chromosome 9qA1, the syntenic region of human chromosome 11q22. Gene-expression analyses delineated cIAP1, a known inhibitor of apoptosis, and Yap, a transcription factor, as candidate oncogenes in the amplicon. In the genetic context of their amplification, both cIAP1 and Yap accelerated tumorigenesis and were required to sustain rapid growth of amplicon-containing tumors. Furthermore, cIAP1 and Yap cooperated to promote tumorigenesis. Our results establish a tractable model of liver cancer, identify two oncogenes that cooperate by virtue of their coamplification in the same genomic locus, and suggest an efficient strategy for the annotation of human cancer genes.
Telomere shortening limits the number of cell divisions of primary human cells and might affect the regenerative capacity of organ systems during aging and chronic disease. To test whether the telomere hypothesis applies to human cirrhosis, the telomere length was monitored in cirrhosis induced by a broad variety of different etiologies. Telomeres were significantly shorter in cirrhosis compared with noncirrhotic samples independent of the primary etiology and independent of the age of the patients. Quantitative fluorescence in situ hybridization showed that telomere shortening was restricted to hepatocytes whereas lymphocytes and stellate cells in areas of fibrosis had significantly longer telomere reserves. Hepatocyte-specific telomere shortening correlated with senescence-associated beta-galactosidase staining in 84% of the cirrhosis samples, specifically in hepatocytes, but not in stellate cells or lymphocytes. Hepatocyte telomere shortening and senescence correlated with progression of fibrosis in cirrhosis samples. This study demonstrates for the first time that cell type-specific telomere shortening and senescence are linked to progression of human cirrhosis. These findings give a novel explanation for the pathophysiology of cirrhosis, indicating that fibrotic scarring at the cirrhosis stage is a consequence of hepatocyte telomere shortening and senescence. The data imply that future therapies aiming to restore regenerative capacity during aging and chronic diseases will have to ensure efficient targeting of specific cell types within the affected organs.
A major concern in therapy of acute liver failure is protection of hepatocytes to prevent apoptosis and maintain liver function. Small interfering RNA (siRNA) is a powerful tool to silence gene expression in mammalian cells. To evaluate the therapeutic efficacy of siRNA in vivo we used different mouse models of acute liver failure. We directed 21-nt siRNAs against caspase 8, which is a key enzyme in death receptor-mediated apoptosis. Systemic application of caspase 8 siRNA results in inhibition of caspase 8 gene expression in the liver, thereby preventing Fas (CD95)-mediated apoptosis. Protection of hepatocytes by caspase 8 siRNA significantly attenuated acute liver damage induced by agonistic Fas (CD95) antibody (Jo2) or by adenovirus expressing Fas ligand (AdFasL). However, in a clinical situation the siRNAs most likely would be applied after the onset of acute liver failure. Therefore we injected caspase 8 siRNA at a time point during AdFasL-and adenovirus wild type (Adwt)-mediated liver failure with already elevated liver transaminases. Improvement of survival due to RNA interference was significant even when caspase 8 siRNA was applied during ongoing acute liver failure. In addition, it is of particular interest that caspase 8 siRNA treatment was successful not only in acute liver failure mediated by specific Fas agonistic agents (Jo2 and AdFasL) but also in acute liver failure mediated by Adwt, which is an animal model reflecting multiple molecular mechanisms involved in human acute viral hepatitis. Consequently, our data raise hope for future successful application of siRNA in patients with acute liver failure.
Aberrant promoter methylation is a fundamental mechanism of inactivation of tumor suppressor genes in cancer. The Ras association domain family 1A gene (RASSF1A) is frequently epigenetically silenced in several types of human solid tumors. In this study, we have investigated the expression and methylation status of the RASSF1A gene in hepatocellular carcinoma (HCC). In two HCC cell lines (HepG2 and Hep3B) RASSF1A was inactivated and treatment of these cell lines with a DNA methylation inhibitor reactivated the transcription of RASSF1A. The methylation status of the RASSF1A promoter region was analysed in 26 primary liver tissues including HCC, hepatocellular adenoma (HCA), liver fibrosis, hepatocirrhosis. Out of 15, 14 (93%) HCC were methylated at the RASSF1A CpG island and hypermethylation was independent of hepatitis virus infection. RASSF1A was also methylated in two out of two fibrosis and in three (75%) out of four cirrhosis; the latter carries an increased risk of developing HCC. Additionally, we analysed the methylation status of p16INK4a and other cancer-related genes in the same liver tumors. Aberrant methylation in the HCC samples was detected in 71% of samples for p16, 25% for TIMP3, 17% for PTEN, 13% for CDH1, and 7% for RARb2. In conclusion, our results demonstrate that RASSF1A and p16INK4a inactivation by methylation are frequent events in hepatocellular carcinoma, but not in HCA, which is in contrast to HCC without cirrhosis, viral hepatitis, storage diseases, or genetic background. Therefore, this study gives additional evidence against a progression of adenoma to carcinoma in the liver. Thus, RASSF1A hypermethylation could be useful as a marker of malignancy and to distinguish between the distinct forms of highly differentiated liver neoplasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.