Interfacial trap-assisted non-radiative recombination and residual stress impede the further increase of power conversion efficiency (PCE) and stability of the methylammonium-free (MA-free) perovskite solar cells (PSCs). Here, we report an interfacial defect passivation and stress release strategy through employing the multi-active-site Lewis base ligand (i.e., (5-mercapto-1,3,4-thiadiazol-2-ylthio)acetic acid (MTDAA)) to modify the surface and grain boundaries (GBs) of MA-free perovskite films. Both experimental and theoretical results confirm strong chemical interactions between multiple active sites in the MTDAA molecule and undercoordinated Pb2+ at the surface or GBs of perovskite films. It is demonstrated theoretically that multi-active-site adsorption is more favorable thermodynamically as compared to single-active-site adsorption, regardless of PbI2 termination and formamidinium iodide (FAI) termination types. MTDAA modification results in much reduced defect density, increased carrier lifetime, and almost thoroughly released interfacial residual stress. Upon MTDAA passivation, the PCE is boosted from 20.26% to 21.92%. The unencapsulated device modified by MTDAA maintains 99% of its initial PCE after aging under the relative humidity range of 10–20% for 1776 h, and 91% after aging at 60 °C for 1032 h.
Nuclear factor-κB (NF-κB) signaling contributes to human disease processes, notably inflammatory diseases and cancer. NF-κB has a role in tumorigenesis and tumor growth, as well as promotion of metastases. Mechanisms responsible for abnormal NF-κB activation are not fully elucidated; however, RelA phosphorylation, particularly at serine residues S536 and S276, is critical for RelA function. Kinases that phosphorylate RelA promote oncogenic behaviors, suggesting that phosphatases targeting RelA could have tumor-inhibiting activities; however, few RelA phosphatases have been identified. Here, we identified tumor inhibitory and RelA phosphatase activities of the protein phosphatase 2C (PP2C) phosphatase family member, PPM1A. We show that PPM1A directly dephosphorylated RelA at residues S536 and S276 and selectively inhibited NF-κB transcriptional activity, resulting in decreased expression of monocyte chemotactic protein-1/chemokine (C–C motif) ligand 2 and interleukin-6, cytokines implicated in cancer metastasis. PPM1A depletion enhanced NF-κB-dependent cell invasion, whereas PPM1A expression inhibited invasion. Analyses of human expression data revealed that metastatic prostate cancer deposits had lower PPM1A expression compared with primary tumors without distant metastases. A hematogenous metastasis mouse model revealed that PPM1A expression inhibited bony metastases of prostate cancer cells after vascular injection. In summary, our findings suggest that PPM1A is a RelA phosphatase that regulates NF-κB activity and that PPM1A has tumor suppressor-like activity. Our analyses also suggest that PPM1A inhibits prostate cancer metastases and as neither gene deletions nor inactivating mutations of PPM1A have been described, increasing PPM1A activity in tumors represents a potential therapeutic strategy to inhibit NF-κB signaling or bony metastases in human cancer.
Purpose To evaluate whether semi-quantitative analysis of high temporal resolution dynamic contrast-enhanced MRI (DCE-MRI) acquired early in treatment can predict the response of locally advanced breast cancer (LABC) to neoadjuvant chemotherapy (NAC). Materials and Methods As part of an IRB-approved prospective study, 21 patients with LABC provided informed consent and underwent high temporal resolution 3 T DCE-MRI before and after 1 cycle of NAC. Using measurements performed by two radiologists, the following parameters were extracted for lesions at both examinations: lesion size (short and long axes, in both early and late phases of enhancement), radiologist’s subjective assessment of lesion enhancement, and percentages of voxels within the lesion demonstrating progressive, plateau, or washout kinetics. The latter data were calculated using two filters, one selecting for voxels enhancing ≥50% over baseline and one for voxels enhancing ≥100% over baseline. Pretreatment imaging parameters and parameter changes following cycle 1 of NAC were evaluated for their ability to discriminate patients with an eventual pathological complete response (pCR). Results All 21 patients completed NAC followed by surgery, with 9 patients achieving a pCR. No pretreatment imaging parameters were predictive of pCR. However, change after cycle 1 of NAC in percentage of voxels demonstrating washout kinetics with a 100% enhancement filter discriminated patients with an eventual pCR with an area under the receiver operating characteristic curve (AUC) of 0.77. Changes in other parameters, including lesion size, did not predict pCR. Conclusion Semi-quantitative analysis of high temporal resolution DCE-MRI in patients with LABC can discriminate patients with an eventual pCR after one cycle of NAC.
Background Multidisciplinary rounds (MDRs) are scheduled, patient-focused communication mechanisms among multidisciplinary providers in the intensive care unit (ICU). Objective i-Dashboard is a custom-developed visualization dashboard that supports (1) key information retrieval and reorganization, (2) time-series data, and (3) display on large touch screens during MDRs. This study aimed to evaluate the performance, including the efficiency of prerounding data gathering, communication accuracy, and information exchange, and clinical satisfaction of integrating i-Dashboard as a platform to facilitate MDRs. Methods A cluster-randomized controlled trial was performed in 2 surgical ICUs at a university hospital. Study participants included all multidisciplinary care team members. The performance and clinical satisfaction of i-Dashboard during MDRs were compared with those of the established electronic medical record (EMR) through direct observation and questionnaire surveys. Results Between April 26 and July 18, 2021, a total of 78 and 91 MDRs were performed with the established EMR and i-Dashboard, respectively. For prerounding data gathering, the median time was 10.4 (IQR 9.1-11.8) and 4.6 (IQR 3.5-5.8) minutes using the established EMR and i-Dashboard (P<.001), respectively. During MDRs, data misrepresentations were significantly less frequent with i-Dashboard (median 0, IQR 0-0) than with the established EMR (4, IQR 3-5; P<.001). Further, effective recommendations were significantly more frequent with i-Dashboard than with the established EMR (P<.001). The questionnaire results revealed that participants favored using i-Dashboard in association with the enhancement of care plan development and team participation during MDRs. Conclusions i-Dashboard increases efficiency in data gathering. Displaying i-Dashboard on large touch screens in MDRs may enhance communication accuracy, information exchange, and clinical satisfaction. The design concepts of i-Dashboard may help develop visualization dashboards that are more applicable for ICU MDRs. Trial Registration ClinicalTrials.gov NCT04845698; https://clinicaltrials.gov/ct2/show/NCT04845698
8019 Background: The detection of driver mutations in the EGFR and ALK genes and targeted therapy has transformed treatment of lung cancer. The LCMC was established in 2009 to assay lung adenocarcinomas for driver genomic alterations in 10 genes and to study and treat patients by their molecular subtypes. Methods: The 14-member LCMC enrolled patients with metastatic adenocarcinoma of the lung and tested their tumors in CLIA laboratories for KRAS, EGFR, HER2, BRAF, PIK3CA, AKT1, MEK1, and NRAS mutations using multiplexed assays, and for ALK rearrangements and MET amplifications using fluorescence in situ hybridization (FISH). Results: 1,102 eligible patients were enrolled; 1,007 underwent testing for at least one genomic alteration with 733 undergoing testing for all 10 genes. 600 patients were women (60%) with a median age of 63; 341 were never smokers (34%) and 589 former smokers (58%). A driver alteration was detected in 622 (62%) of the 1,007 with any genotyping, and in 465 (63%) of the 733 fully genotyped cases. Among the tumors with full genotyping, drivers were found as follows: KRAS 182 (25%), sensitizing EGFR 107 (15%), ALK rearrangements 56 (8%), other EGFR 43 (6%), two genes 29 (4%), BRAF 16 (2%), HER2 15 (2%), PIK3CA 6 (1%), MET amplification 5 (1%), NRAS 5 (1%), MEK1 1 (<1%), and AKT1 0 (0%). Results were used to select targeted therapy or targeted trials in 279 patients with a driver alteration (28% of 1,007 total). Among 938 patients with clinical follow-up and treatment information, 264 with a driver alteration treated with a targeted agent had a median survival of 3.5 years; 313 with a driver who did not receive targeted therapy had a median survival of 2.4 years; while 361 without an identified driver had a median survival of 2.1 years (p<0.0001). Conclusions: An actionable driver alteration was detected in 62% of tumors from patients with lung adenocarcinomas, leading to use of a targeted therapy in 28%. The patients with an identified driver treated with a targeted agent lived longer than those patients who did not receive targeted therapy. Multiplexed genomic testing can aid physicians in matching patients with targeted treatments and appropriate clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.