BackgroundExercise cardiovascular magnetic resonance (ExCMR) has great potential for clinical use but its development has been limited by a lack of compatible equipment and robust real-time imaging techniques. We developed an exCMR protocol using an in-scanner cycle ergometer and assessed its performance in differentiating athletes from non-athletes.MethodsFree-breathing real-time CMR (1.5T Aera, Siemens) was performed in 11 athletes (5 males; median age 29 [IQR: 28–39] years) and 16 age- and sex-matched healthy volunteers (7 males; median age 26 [interquartile range (IQR): 25–33] years). All participants underwent an in-scanner exercise protocol on a CMR compatible cycle ergometer (Lode BV, the Netherlands), with an initial workload of 25W followed by 25W-increment every minute. In 20 individuals, exercise capacity was also evaluated by cardiopulmonary exercise test (CPET). Scan-rescan reproducibility was assessed in 10 individuals, at least 7 days apart.ResultsThe exCMR protocol demonstrated excellent scan-rescan (cardiac index (CI): 0.2 ± 0.5L/min/m2) and inter-observer (ventricular volumes: 1.2 ± 5.3mL) reproducibility. CI derived from exCMR and CPET had excellent correlation (r = 0.83, p < 0.001) and agreement (1.7 ± 1.8L/min/m2). Despite similar values at rest (P = 0.87), athletes had increased exercise CI compared to healthy individuals (at peak exercise: 12.2 [IQR: 10.2–13.5] L/min/m2 versus 8.9 [IQR: 7.5–10.1] L/min/m2, respectively; P < 0.001). Peak exercise CI, where image acquisition lasted 13–17 s, outperformed that at rest (c-statistics = 0.95 [95% confidence interval: 0.87–1.00] versus 0.48 [95% confidence interval: 0.23–0.72], respectively; P < 0.0001 for comparison) in differentiating athletes from healthy volunteers; and had similar performance as VO2max (c-statistics = 0.84 [95% confidence interval = 0.62–1.00]; P = 0.29 for comparison).ConclusionsWe have developed a novel in-scanner exCMR protocol using real-time CMR that is highly reproducible. It may now be developed for clinical use for physiological studies of the heart and circulation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-017-0322-1) contains supplementary material, which is available to authorized users.
Objectives: The imaging features of dilated cardiomyopathy (DCM) overlap with physiological exercise-induced cardiac remodeling in active and otherwise healthy individuals. Distinguishing the two conditions is challenging. This study examined the diagnostic and prognostic roles of exercise stress imaging in asymptomatic patients with suspected DCM. Methods: Exercise stress cardiovascular magnetic resonance (CMR) was performed in 60 asymptomatic patients with suspected DCM (dilated left ventricle and/or impaired systolic function on CMR), who also underwent DNA sequencing for DCM-causing genetic variants. Confirmed DCM was defined as genotype-and phenotype-positive (G+P+). Another 100 healthy subjects were recruited to establish normal exercise capacities (peak exercise cardiac index; Peak CI). The primary outcome was a composite of all-cause mortality, cardiac decompensation and ventricular arrhythmic events. Results: No patients with confirmed G+P+ DCM had Peak CI exceeding the 35th percentile specific for age and sex. Applying this threshold in G-P+ patients, those with Peak CI below 35th percentile had characteristics similar to confirmed DCM while patients with higher Peak CI were younger, more active and higher longitudinal strain. Adverse cardiovascular events occurred only in patients with low exercise capacity (P = 0.004). Conclusions: In individuals with suspected DCM, exercise stress CMR demonstrates diagnostic and prognostic potential in distinguishing between pathological DCM and physiological exercise-induced cardiac remodeling.
In this paper, zinc oxide ͑ZnO͒ thin films as an antireflective ͑AR͒ coating layer have been successfully fabricated on GaAs solar cells by the sol-gel method. ZnO films were prepared chemically by spin coating the gel with an aqueous solution of zinc acetate and ethanolamine. The current-voltage measurements of the solar cells confirmed the increase of the short-circuit current induced by the AR effect. The open-circuit voltage and fill factor were also improved by the surface passivation. As a result, the conversion efficiency of the cells without an AR coating ͑8.2%͒ was significantly enhanced to 13.6%. The results indicate that the chemical deposition of ZnO was effective for the AR coating of GaAs solar cells. Additionally, we demonstrate that the cells coated with radiation resistant ZnO films exhibit less efficiency decay than the devices without such treatment. Under the maximum proton fluence of 10 13 cm −2 , the conversion efficiency decay was reduced to 69.8%, while the solar cells without ZnO films showed an efficiency decay of 83.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.