Helicobacter pylori infects approximately half the human population. The outcomes of the infection range from gastritis to gastric cancer and appear to be associated with the immunity to H. pylori. Patients developing nonatrophic gastritis present a Th1 response without developing protective immunity, suggesting that this bacterium may have mechanisms to evade the immune response of the host. Several H. pylori proteins can impair macrophage and T cell function in vitro through mechanisms that are poorly understood. We tested the effect of H. pylori extracts and live H. pylori on Jurkat cells and freshly isolated human normal T lymphocytes to identify possible mechanisms by which the bacteria might impair T cell function. Jurkat cells or activated T lymphocytes cultured with an H. pylori sonicate had a reduced proliferation that was not caused by T cell apoptosis or impairment in the early T cell signaling events. Instead, both the H. pylori sonicate and live H. pylori induced a decreased expression of the CD3ζ-chain of the TCR. Coculture of live H. pylori with T cells demonstrated that the wild-type strain, but not the arginase mutant rocF(−), depleted l-arginine and caused a decrease in CD3ζ expression. Furthermore, arginase inhibitors reversed these events. These results suggest that H. pylori arginase is not only important for urea production, but may also impair T cell function during infection.
Intestinal metaplasia is a cancer precursor in the esophagus and the stomach. Marked differences exist between the carcinogenic processes in the two locations in terms of natural history and clinical significance. We investigated biopsies from 52 patients with Barrett's esophagus and from 50 patients with gastric intestinal metaplasia in an attempt to throw light on their pathogenic processes. Morphologic characteristics, presence of Helicobacter pylori (H. pylori), and markers of differentiation, inflammation, and proliferation were evaluated by histochemical and immunohistochemical techniques. The area covered by incomplete type of intestinal metaplasia and the proportion of sulfomucins were significantly higher in the esophagus than in the stomach. Immunoreactivity with MUC1, MUC2, MUC5AC, Das-1, cytokeratins 7 and 20, inducible nitric oxide synthase and cyclooxygenase-2 antibodies was also significantly greater in Barrett's esophagus than in gastric intestinal metaplasia. In gastric intestinal metaplasia, the presence of MUC1, MUC5AC, Das-1 and cytokeratin 7 was restricted to areas with the incomplete type of metaplasia. Cell proliferation (Ki-67) was significantly higher in Barrett's esophagus than in gastric intestinal metaplasia. H. pylori was absent in all of the patients with Barrett's esophagus, while it was present in 70% of the patients with gastric intestinal metaplasia. Our observations made clear that Barrett's esophagus shares some phenotypic characteristics with gastric intestinal metaplasia, leading us to suggest that both could arise in response to injuries with eventual carcinogenic potential. However, the progression to more advanced lesions could be modulated by the nature of the carcinogenic insult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.