Under different situations, solvothermal reactions of 3,5-diethyl-4-(4-pyridyl)-pyrazole (HL) with CuX or CuX(2) (X = Cl, Br, I, and SCN) afforded five copper(I) coordination polymers, {CuX[CuL](3)·solvent}(n) (X = Cl, 1; Br, 2; I, 3; X = SCN and solvent = MeCN, 4) and {Cu(2)I(2)[CuL](3)}(n) (5). X-ray diffraction analyses show that all the complexes have trinuclear [CuL](3) (referred as Cu(3)) secondary building units featuring planar nine-membered Cu(3)N(6) metallocycles with three peripheral pyridyl groups as connectors, which are further linked by CuX or Cu(2)X(2) motifs to generate single- or double-strand chains. Interestingly, the Cu(I) atoms within the Cu(3) units in 1-5 behave as coordinatively unsaturated π-acid centers to contact soft halide/pseudohalide X atoms of CuX and Cu(2)X(2) motifs, which lead to novel sandwich substructures of [(Cu(3))(Cu(2)X(2))(Cu(3))] (X = Br, I, and SCN) in 2-4. In addition, both the π-acid [Cu(3)]···X contacts and intertrimer Cu···Cu interactions contribute to the one-dimensional (1D) double-strand and 2D/3D supramolecular structures of 1-5. All of these complexes exhibit high thermostability and bright solid-state phosphorescence upon exposure to UV radiation at room temperature. The emissions arise from the mixtures of metal-centered charge transfer, metal to ligand charge transfer, and halide-to-ligand charge transfer excited states, and can be tuned by intermolecular π-acid [Cu(3)]···halide/pseudohalide contacts.
There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.