Published by Copernicus Publications on behalf of the European Geosciences Union. 484M.-J. Gaillard et al.: Holocene land-cover reconstructions for studies on land cover-climate feedbacks Abstract. The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past landcover from pollen data, (3) to present a new project (LAND-CLIM: LAND cover -CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need for methods such as the REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past landcover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The RE-VEALS model is demonstrated to provide better estimates of the regional vegetation/land-cover changes than the traditional use of pollen percentages. This will achieve a robust assessment of land cover at regional-to continental-spatial scale throughout the Holocene. We present maps of RE-VEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs "grassland" and "agricultural land" at five time-windows from 6000 BP to recent time. The LAND-CLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions.
We present quantitative reconstructions of regional vegetation cover in northwestern Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (BP)] at a 1° 9 1° spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types [evergreen trees, Correspondence: A.-K. Trondman, tel. + 46 (0)480 44 61 98, fax + 46 (0)480 44 73 40, Global Change Biology summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k BP and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k BP is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.
In this paper we test the performance of the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model using pollen records from multiple small sites. We use Holocene pollen records from large and small sites in southern Sweden to identify what is/are the most significant variable(s) affecting the REVEALS-based reconstructions, i.e. type of site (lakes and/or bogs), number of sites, site size, site location in relation to vegetation zones, and/or distance between small sites and large sites. To achieve this objective we grouped the small sites according to (i) the two major modern vegetation zones of the study region, and (ii) the distance between the small sites and large lakes, i.e. small sites within 50, 100, 150, or 200 km of the large lakes. The REVEALS-based reconstructions were performed using 24 pollen taxa. Redundancy analysis was performed on the results from all REVEALS-model runs using the groups within (i) and (ii) separately, and on the results from all runs using the groups within (ii) together. The explanatory power and significance of the variables were identified using forward selection and Monte Carlo permutation tests. The results show that (a) although the REVEALS model was designed for pollen data from large lakes, it also performs well with pollen data from multiple small sites in reconstructing the percentage cover of groups of plant taxa (e.g. open land taxa, summer-green trees, evergreen trees) or individual plant taxa; however, in the case of this study area, the reconstruction of the percentage cover of Calluna vulgaris, Cyperaceae, and Betula may be problematic when using small bogs; (b) standard errors of multiple small-site REVEALS estimates will generally be larger than those obtained using pollen records from large lakes, and they will decrease with increasing size of pollen counts and increasing number of small sites; (c) small lakes are better to use than small bogs if the total number of small sites is low; and (d) the size of small sites and the distance between them do not play a major role, but the distance between the small sites and landscape/vegetation boundaries is a determinant factor for the accuracy of the vegetation reconstructions.
We aim to provide a long-term ecological analysis of land-use and floristic diversity in the transition from traditional to modern land-use management in the time A.D. 1800-2008 in southern Sweden. We use the Regional Estimates of Vegetation Abundance from Large Sites (REVEALS) model to quantify land-cover changes on a regional scale at 20-year intervals, based on the fossil pollen record. Floristic richness and evenness are estimated using palynological richness and the Shannon index applied to the REVEALS output, respectively. We identified a transition period of 60 years between 1880 and 1940 when the total tree cover increased and the tree composition changed from deciduous to coniferous dominance. Within the shrinking area of open land, arable land taxa expanded, while the number and coverage of herbs in the remaining grasslands decreased. The succession from open grasslands to more tree-covered habitats initially favoured palynological richness, which reached its highest values during the first 40 years of the transition period. The highest REVEALS-based evenness was recorded in the time of traditional land-use and at the beginning of the transition period, reflecting higher habitat diversity at these time intervals. Our results support a more dynamic ecosystem management that changes between traditional land-use and phases of succession (\40 years) to promote floristic diversity. We have developed and applied a palaeoecological methodology that contributes realistic estimates to be used in ecosystem management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.